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ORIENTATION

This is Part V of a six-part report on the results of an

* -', investigation into the problem of determining the scattered field

* resulting from the interaction of a given electromagnetic incident

wave with a perfectly conducting body executing specified motion and

deformation in vacuum. Part I presents the principal results of the

study of the case of a general motion, while Part II contains the

.9, specialization and completion of the general reasoning in the situation

in which the scatteringbody is stationary. Part III is devoted to

the derivation of a boundary-integral-type representation for the

scattered field, in a form involving scalar and vector potentials.

Parts IV, V, and VI are of the nature of appendices, containing the

proofs of numerous auxiliary technical assertions utilized in the

first three parts. Certain of the chapters of Part I are sufficient

preparation for studying each of Parts III through VI. Specifically,

the entire report is organized as follows:

Part I. Formulation and Reformulation of the Scattering

Problem

- Chapter 1. Introduction

Chapter 2. Manifolds in Euclidean Spaces.
Regularity Properties of Domains

[Summary of Part VI]

Chapter 3. Motion and Retardation
* [Summary of Part V][S9ar.fPatV

. o,. - - - . . . . . . . . .. . . . -. . -. . -. . . . . . , . . .. - . - .. -
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Chapter 4. Formulation of the Scattering Problem.
Theorems of Uniqueness

Chapter 5. Kinematic Single Layer Potentials
(Summary of Part IV]

Chapter 6. Reformulation of the Scattering Problem

Part II. Scattering by Stationary Perfect Conductors
[Prerequisites: Part I]

Part III. Representations of Sufficiently Smooth Solutions
of Maxwell's Equations and of the Scattering
Problem
[Prerequisites: Section (1.1.4], Chapters 11.2
and 3], Sections [1.4.1] and [1.5.1-10]]

Part IV. Kinematic Single Layer Potentials
[Prerequisites: Section [I.1.4], Chapters [1.2
and 3]]

Part V. A Description of Motion and Deformation. Retardation
of Sets and Functions
[Prerequisites: Section [1.1.4], Chapter (1.2]]

Part VI. Manifolds in Euclidean Spaces. Regularity
Properties of Domains
(Prerequisite: Section [1.1.4]]

The section- and equation-numbering scheme is fairly self-

explanatory. For example, "[1.5.4]" designates the fourth section of

Chapter 5 of Part 1, while "(1.5.4.1)" refers to the equation numbered

4 (1) in that section; when the reference is made within Part I,

however, these are shortened to "[5.4]" and "(5.4.1)," respectively.

Note that Parts II-VI contain no chapter-subdivisions. "[IV.14]"

indicates the fourteenth section of Part IV, "(IV.14.6)" the equation
' numbered (6) within that section; the Roman-numeral designations are

never dropped in Parts II-VI.

S. .

-''|
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A more detailed outline of the contents of the entire report

appears in [1.1.2]. An index of notations and the bibliography are

also to be found in Part I. References to the bibliography are made

by citing, for example, "Mikhlin [34]." Finally, it should be

pointed out that notations connected with the more common mathematical

concepts are standarized for all parts of the report in (1.1.4].

* SS
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PART V

A DESCRIPTION OF MOTION AND DEFORMATION.

RETARDATION OF SETS AND FUNCTIONS

We concern ourselves here with a precise mathematical realiza-

tion of a fairly broad class of physical bodies moving and deforming

in space; of course, to be subsumed here is the possibility that the

body under consideration is fixed. In so doing, we shall be specifying

the types of regions in space-time in which we are studying electro-

magnetic scattering phenomena, as well as providing the groundwork for

the introduction of certain potential functions defined and examined

in Chapter [1.5] and Part IV. Also, the results of this Part V

allow us to set up, in Chapter [1.4], the requisite exact classical

formulation of the family of scattering problems under consideration,

as initial-boundary-value problems for Maxwell's equations.

We begin with the basic definition of a "motion," and establish

various geometric and topological implications of this definition.

Subsequently, we take up the connections between a motion and character-

istic cones. Finally, the basic classes of "smooth" motions are

defined, and their important properties are described.

As always, c denotes the constant appearing in Maxwell's

equations, representing the speed of light in vacuum.

,,

"'p. 'e ' ,,, .;.," .t ',, , •.,', ., ., - ..- ., . .- -.- .-. .- . ,. . -. . .-. . . ,.' ' . .•.
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[V.1] DE FINIT IONS. Let IM denote the family of all

ordered triples US }E R R, X), wherein

(i) for each C Elk, B is a non-void, compact, and

regularly closed subset of R 3 possessing connected

complement, while R C R 3  is non-void and compact;

(ii) X: RxR --R3  is a continuous function such that, for

each C ER, x(,): AR -IR3 is an injection taking

*R onto 3B; moreover, x(P,-) is Lipschitz con-

tinuous on IR, uniformly as P ranges over aR, with

c~ :isup x(PC2)-x(PC 1Ic* sup 2- 1  P E AR; ;11C2 E IR,

Ci 0 C21 r [Oc);

(iii) whenever C ER and (4i)i. 1  is a sequence in R

which converges to C, then

lim A3(B aB) - 0;
ii

and

(iv) whenever C ER and Z E aB there exists a positive

number n(Z,C) such that for each C E (O,n(Z,;)],

there can be found continuous functions PIE: [-E'c] "

R 3  and PEE: [_Cc] ,R satisfying

PI B 3 (Z)' B0  1
IC C+-I

and c whenever I&I E< . (2)

dF 3
pE E B C (Z)- 1

C
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Define an equivalence relation & on 14 by declaring that,

if ({B i; }1 Em, Ri, Xi) 6E14 for 1 1 and 2, then

({B I }} , R1, X1 )&({B 2 - , R2 , x2) iff there exists a continuous

bijection F1 2 : 3R1 - A 2 such that

- x2 (FI2(P),¢) for each P 6 AR, r GR. (3)

Then a motion is an equivalence class of elements of 14 under the

equivalence relation &.

Let M C 14 be a motion, and ({B },(l, RX) e M: R is

termed a 4~eAence Aet, x a motLon Junction, and (R,X) a tere-ence

pa A for the motion M. A property or quantity associated with
N

({ }I R, x) is said to be intkin6ie to M iff it is possessed

by or characteristic of every element of M. U.

[V.2] R E M A R K S. We shall maintain here the notation of [V.1].

(a) It is known that the collection of all subsets of R3 with

finite Lebesgue measure is a (complete) metric space when equipped with

the metric given by (A,B) . )X3(AAB), with the understanding that

sets A and B for which 3(AAB) - 0 are to be identified (so that,

more precisely, we must consider the corresponding collection of

equivalence classes); cf., e.g., Hewitt and Stromberg [20]. Now,

Postulate [V.l.iii] says that the map C B 8 on 3R into this metricC

space is continuous, a most reasonable requirement from the standpoint

of intuition. Condition rV.l.iii] is used only in the proof of the

extremely important "intermediate-value," or "boundary-crossing,"

4' ''" .- v "; " ; V '''''',.,,. ~ .. ,""' .; j", ,' '." . ". . .. ,' ''' " . . " . -. ."-. . ". . ." . -
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JR (Time)
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FIGURE 2. Body moving and deforming in space-time
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FIGURE 3. Definition of "Motion"
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Lemma [V.9], iznt a. If the latter can be proven by using only [V.l.i

and ii] (which we have not succeeded in doing, but strongly suspect

is possible), a concomitant economization of [V.1] would be in order,

through the deletion of [V.l.iii].

(b) The status of condition (V.l.iv] is not unlike that of

[V.l.iii]: we have found LV.l.iv] to be a sufficient condition under

which the urgently needed statement of Proposition [V.27], in~ta, can

be verified; if, as we believe to be entirely possible, [V.27] can be

substantiated solely on the basis of [V.l.i and ii], then it would be

permissible to-do away with Postulate [V.l.iv]. In fact, it appears

reasonable to expect that [V.l.iv] follows from [V.l.i and ii], in

which case we could, of course, certainly eliminate the former from

[V.1]. It shall follow from the upcoming Lemma [V.12], which is proven

without recourse to [V.l.iv], that whenever 4 S=R, Z e 3B, and

e > 0, then

B 3)(Z)V1 °  01

CC

C

Thus, the axiom of choice can be invoked to conclude that there exist

functions on [-c,c] into IR 3for which (V.1.2) holds; the important

additional assertion of IV.l.iv] is that con.tinuouz functions of this

sort can be found, for all sufficiently small c > 0 (depending on

Z and o_

- Ii

-. +

.,

J-.
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In any event, we must point out that [V.l.iv] is a fairly weak

restriction on the collection {B }CEIR and is satisfied in most

cases of practical inte'rest. In particular, it is fulfilled when each

as is a (2,3;l)-manifold, and even when some or all of the sets

(aB C} exhibit corners and spikes, provided these are neither "too

severe" nor "too closely spaced." On the other hand, it is easy to

generate examples in which each as possesses very severe corners,

spikes, and cusps, but for which [V.l.iv] holds. For more details

concerning this matter, one should consult [V.28-30].

(c) If the number c* of (V.1.1) is equal to zero, then

conditions [V.l.iii and iv] are trivially fulfilled; cf., [V.5.c].

(d) The inequality c* < c of (V.1.) is crucial for later

developments, exerting a decisive effect on the geometry of a motion in

space-time; this will become clear as we proceed. Loosely speaking,

the condition demands that "the 'speed' of each 'point on the surface

of the moving body' is always less than c."

(e) & is indeed an equivalence relation on IM: its

reflexivity and transitivity are certainly easily verified, while to

check its symmetry we need only observe that, with notation as in [V.1],

since aR is compact, the continuous bijection FI: -R R is
1 F1 2. 1 2

in fact a homeomorphism, so its inverse F R21 A 2 - aR1 is a con-

tinuous bijection, with X2 (P, ) - xI(F 21(P),;) for P e aR2 and

C :R.

(f) For each EIR, the requirement of [V.l.i] that S be

II Il
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regularly closed, i.e., that 8° - implies that B°  is non-void,

8° and B, are regularly open, and 3B. = {Bo} =a{B}.

(g) Let C ER. By [V.l.ii], X(',;): DR - aB is a

continuous bijection, whence the compactness of DR shows that this map

is a homeomorphism. Thus, the collection {{a8I , DR) consists of

pairwise homeomorphic sets.

(h) Let M be a motion. We can already identify several

intrinsic properties of M:

(i) c*, as computed from the Definition (V.1.1), using any

element ({B O a R, X) E M

[Indeed, if also ({B-} R, X) E M, and we denote
46R,

the corresponding constant by E*, then the equality

c* - Z* is a simple consequence of the existence of a

bijection F: DR- aR such that x(P, ) - R(F(P), )

for each P 6 DR and 4 EM, as one can readily check,

with (V.1.1).],

(ii) BV for each EIR, wherein ({B S sR, R, x) E M

[For, suppose that ({B}., R, X) is also in M, and

let F: DR - DR be as in (i). Choose ER. Then

Thus, since B and B' are closed, we have B -

Boua BouaB and DB CBso

10



-10-

Bl . OBfnl(3*aB) - s;

00 0

and we can write

.o

From this, upon recalling that 5' is connected

((v.1.1], and observing that B-n~ and B-'(B'

are mutually separated (since this is certainly true of

8°  and B'), we deduce that exactly one of the sets

B-'s °  and B-'nB' is empty. If the latter were

empty, we should find that B-' C BS, which is clearly

impossible, since B' is unbounded, while B is

bounded. Therefore, rg - 0, whence So C B

A" and 8 - °C B-. we are led to the reversed inclusion

by similar reasoning, so B- BV and B is indeed

intrinsic to M.],

and

4, (iii) UxaR X(PR), the set swept out by the "particle paths", 4.

for A, wherein (R,X) is any reference pair for M4 -

[This follows easily from (ii), since the set in

question is just U a54.].

(j) Let M be a motion. Fix C e]R. There exists a reference I:

pair for M of the form (B XC), wherein B is the intrinsic

"position" of the motion at the "time" 4, and X (.,;) is the .4

identity function on as 4 . To see this, let ({Bs I , R, X) GM, and[ss"<

I:
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denote the inverse of X(-,): aR 3 S by xl _S aR. Define

X asB;xIR0]R3 by setting

X (Ys) :- X(X;y),s) for each y E aB;, s EI.

Clearly, X (, ) is the identity on as . In order to check that

{B s seml B;, X) E , we observe first that the requirements of

[V.l.i, iii, and iv] are obviously fulfilled. Concerning the satisfaction

of the conditions of [V.l.ii], we begin by noting that the map (Y,s)i-

(X' (Y),s) is continuous on as xR onto BRx]R (the coordinate

functions of the map are continuous, since Xl aB -0 R is

continuous), while X: aR4R -R3 is continuous, so X€  is continuous,

as the composition of these two maps. Next, for any s Em,

X (.s) - X(X 1(),s): a s - a5s is injective, for X 1  and X(,s)

are injections. Further, X ( ) = aR, while X(OR,s) = ;s, so

X ( ,1s) = s . Finally,

sup Ix (YS 2)x,(y,s 1)I31  Y E 35; sis EIR, s s 2

su{p !2~l P E- aR; sil's ER, sl s- 5u2}2_l

M c* 6. [O,c),

with c* denoting the intrinsic constant for M; the second equality

follows from the definition of XC and the fact that x-1 (B) 9R.

We can now assert that ({B s _R 5, x8 ) 9 ; there remains only the

verification that this ordered triple is in M, ie., is &-equivalent

-'2.
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to ({BSsEsR R, x). But this follows directly from the fact that

X as - aR is a continuous bijection and the very definition of

X Thus, (B ,X ) is a reference pair for M.

(k) As usual, let M be a motion, and ((B) = R R, X) M.

We have demanded only that M possess a sort of "continuity," in the

sense prescribed by the continuity of X and the map ' B (cf.,

(a)); no smoothness conditions have been placed on either X or the

boundaries R and {as } 4 . We shall later define and study various

classes of motions which do possess such smoothness, after examining

certain implications of the general definition of [V.1], i.e., after

exploiting the basic continuity postulates as far as we can.

(1) The class of physical moving bodies which can be modelled

by using our definition of "motion" is limited principally by the

assumption that the boundaries {aB } are mutually homeomorphic.
."

Thus, we can describe, for example, the simultaneous movement of a

collection of bodies, but it is evident that these can be permitted

neither to fuse together nor even collide, nor can any one split apart;

such a deficiency may prove to be prohibitive in certain contemplated

applications. On the other hand, short of breaking up or bending over

to touch itself, any one body can be permitted to undergo quite severe

deformations, while its movement in the rigid-body sense is unrestricted,

so long as c* < c.

[V.31 N 0 T A T I 0 N S. Let M be a motion. Throughout the sequel,

the symbols B (for each E IR) and c* shall be reserved for the

91

..-
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intrinsic properties of M as in [V.2.h.i and ii], while (R,X)

shall always denote a reference pair for M. For each ; CE R, we

shall write, whenever it is convenient to do so, x:

A a8; of course, just as in Remark [V.2.j], the inverse of this

homeomorphism is denoted by X a sB aR. Thus,

X(x 1(Z),;) = x (X 1(z)) - z for each 6 Em, I z c- , (1)

and

x- Mx(x(P)) - P for each C em, P C aR. (2)

Further, X*: ARM -IR4 is the function given by

X*(P,) :- (X(PI),4) for each P C aR, CR. (3)

We introduce the subsets B and fa of IR4  via

3 := R {B x{(O}, (4)

and

92 :-M' - U {s'x{)j. (5)

Whenever A CICR and C CR, the ;-6ection oj A, A C IR s

defined by

A { :- {Y m31 (Y,c) r A). (6)

Evidently, we can write A = U {A x{;)), while for the sets B

and Q associated with the motion M, we have 3 -5 and

P-
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*-' FIGURE 4. Body moving and deforming in
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FIGURE 5. Sets associated with moving body

'.



- °.- ;
:W

-a- 15 -

M Bt for each C EM. Finally, if A CI 4 and I is an interval

in m, we define A1 C
4  according to

S A

A1 :- {(Y,:) 6 Aj S I} - A,"iR'XI}. (7)

[V.4] D E F I N I T I O N. A motion M is said to be nuZ, or

Atationay, iff c* 0. M.

[V.5] R E M A R K S. (a) Let M be a null motion. From (V.1.1),

with c* - 0, it is clear that X(P,C1) - X(P,r 2) if P C R and

C1,€2 EM. Then 3B1 x(R,€1) x(aR, 2) a C2, with which reason-

ing as in [V.2.h.ii] shows that B 1 B whenever 132 SR the

body is stationary. Note, however, that it is easy to find an example

of a nonstationary motion for which BCi a BC2 whenever Cl,2 emR;

as a particularly simple one, consider a closed ball spinning about its

fixed center. It turns out that if such a motion models the movement

of a perfectly conducting body, the motion is "essentially null"

insofar as its electromagnetic scattering properties are concerned,

i.e., the solution of a scattering problem associated with such a motion

will be the same as the solution of the problem obtained by replacing

the "essentially null" motion with the corresponding null motion,

leaving all else the same.

(b) Obviously, with any set B Cm 3 having all of the

properties cited in [V.l.i], there is associated a unique null motion

M: generate an element of 3M as ({B I B, x), wherein 8 :B

for each C CEm, and X(P,C) :- P for each P e as and C ER. Take

,-
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M to be the &-equivalence class in IM which contains ({BUS R, ).

(c) If we construct a triple ({S }8 E , R, X) as in [V.l.i

and ii] for which c* - 0, then, just as in (a), we find that

S- B2 whenever Ci,C2 EmR. Then condition [V.l.iii] is certainly
C 1  C2

fulfilled. But if C E6R, Z CE a8, and £ > 0, we need only choose

Y CmB .(z)r)B8, Y B (Z)flB; and set p~(& :-Ye
IE C Ec E CE(& 1 :=)YEE

for I0I < E to conclude that [V.l.iv] obtains, as well.

We continue to accumulate consequences of Definition [V.1].

For the proof of [V.7], we shall invoke the following general fact:

[V.6] L E M M A. Let T and T be metxic Apacez. Suppoze that
1 2

f: TI -.i T2 i a eontinuou4 bijection ,uch that whenevet K2 i

a compact ub.6e.t o T2 , theAe exi .t6 a covmeponding compact

K c T 6uch ,that K2 C f(K 1 ). Then f-1 i4 con-tA.flou, i..e.,

f i. a hosmeomo,,ph~m.

P R 0 0 F. This follows from the somewhat more general result of

Appendix V.A. 0.

[v.7] P R O P 0 S I T I 0 N. Let M be a motion, (R,x) a u..,.nce

paJ' o'. M, and X*: ARx.-1.R 4 R azin [ v.3]. x* i a homeo-

mfokphiLhr o6 aRxit on~to the set U CR(as8 X10II.

P R 0 0 F. We have x*(P,;) :- (x(P,c),;) for each P 6 aR,

C GEIR, showing that the coordinate functions of X* are continuous

on 3Rx]R, since those of X are. The continuity of X* follows.

I2e

'I.
-V.

'.'. ,,.'',,.2-.'. . , ;;'. ","..";. ,'"':..'."".,','.',,." "2 , " ";", ', ',' ' . ,' " ""'.: ", "., "" <"-"" -":" ."" , ,- " ." I
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For each EmR, (,) is bijective from 3R onto aS,, so

x*(-,) is bijective from AR onto aB x{C}; the bijectiveness of

k".., x* f rom aRx]R to U E OB~ x{0}} follows readily. The continuity

4
of x* as a map into IR implies its continuity as a map onto

U {O5 x(;)} equipped with the relative topology. To show that

x*l U {as ;x{1}l - AcR is continuous, we apply Lemma [V.6].

Suppose, then, that K C U {9B x{f}} is compact. Then K is

*bounded, so Ix 4I < N for each x E K, for some N > 0. This gives

K C U {OB X{W - X*(aRx[-N,N]). Noting that aRx[-N,N]

is compact in aRx]R, we see that X* has the property required of

f in [V.6], when T -aRx]R and T 2 U ;EM B x{c}} (which are,

,ez-o of course, equipped with the metric inherited from I4).Thus, -

is continuous. 03.

-r*- 
-xObserve that X (Z,;) (X(Z),0), for ( Ej]R and

Z E aB The coordinate functions of X are continuous, by (V.7],

so the coordinate functions of the map (Z,Ot) X are also

continuous. Consequently, we have proven

iV.8] C 0 R 0 L L AMR Y. Let hi be a motion, and (RX) a

4teeAence pa.L 6o4 . Thnthe map (Z,;) i- X Z) 1~ ~ n~~

on U {O5 x[0)1 onto aR.

Statements [V.9] through [V.13] are expressions of the con-

EU tinuity, Lipschitz continuity, and "speed" properties of a motion. We

shall rely heavily on these results in later arguments.

3

[V.9] L E M M A. Let M be a motion. Suppo.~e that x Em 3R With



X rC 50 ln 6or some E IR (6o 1 2 Thea tkeexe tx~ 1 2 241
1 ~2

at Zeazt one ; between 1 and C2 Jor which x r 3B.

P R 0 0 F. Let I denote the closed interval with endpoints 1 and

Set A1. X e B } and A:- X E B'). Neither

A1  nor A2  is empty, since ;1 E A1  and 2 A2 . We shall show

presently that A1  and A2  are mutually separated (i.e., AiflA2 = 0

and AI('IA - 0); if we assume, for the moment, that this has been

accomplished, the proof of the lemma follows quickly. In fact, I

is connected, so the union A1UA2  of the non-void and mutually

separated subsets A1 and A2 of I must be a proper subset of I.

That is, there must exist some 4 E I(AIUA2)', for which we then

have X 6 80 Ii6 - -B 5 - 8 , as required (obviously, i

; 2) •

To show that A1  and A2  are mutually separated, we introduce

the auxiliary function *: I -1 [0,-) given by

$(&) :- dist (XMB ) :- inf {JX-Y3 1 Y E 35 } for each E C I.

Selecting a reference pair (R,X) for M, it is clear that we can

also write

- inf {Xx(P,u)j 3 l F E aR} for each E C I, (1)

since x(OR,P) - a5 P for each u C. From (1), the continuity

of * can be proven: letting c > 0, (1) shows that we can find

for each E C I a point P 6 aR with IX-x(P ,ii) 3 <

.... .... U.P1..3....-.-., .--
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* "Then, if u and are in I, we have, with (1) and (V.1.1),

,( ) ( )< IX-x(P O -X-P ,)3+

'< Ix(Pu ' ,F-x(P ,I)I 3+

-- ~ 2

Upon interchanging the roles of and U in this estimate and

supposing that [u-&I < c/2c*, it follows that !*( )-p(i)I < C.

Thus, p is continuous. To prove that AfnA 0, assume, to the
1 A2  0,asmtth

contrary, that there exists some p E A nA 2 . Then X E , so
0 1 2

(U0) > 0. Also, we can find a sequence (Un)n-I in A1  which con-

verges to U0; the continuity of J showing then that lim m (1n) =
nn - cc

*(Uo), we shall suppose that *(pn) > j *(U0) for each n E]N, as

we may without loss. Setting 6 :- i ) , it is clear that

B3(X) C B fB' , since {ni } C A and UEA, so
n  0

4A 3(B 1 0) >_ -jn > 0, for each n IN.

However, this contradicts property [V.l.iv], which says that

X3 (B ) < X ({B n }U{B' r })
n 0 n 0 n 0

S3(BnAB0 ) -0 as n- .

n 0

Thus, A1 )A2 - 0. Similarly, if we suppose that A1OA2  contains a

point &0' we can find a sequence (& in A2 and converging to

&0 for which

*1 '" . -: " " .o~, -. ; , , . ' '. : - . - - -_ .- _. . . . . . . . . . . . .
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X3 (B' ) > for each n E DI,
no0

-1

wherein S :- I > 0. This is again impossible by [V.l.iv], for

we must have

A3 (Bj n O)_0 A3(BEnAB ) 0 as n * .

Thus, A and A are mutually separated. As noted, this completes

1 2

the proof of the lemma. 0.

[v.10] L E M M A. Let M be a motion. 16 ; Em and E > c*,

then B C+&C (B) 6o each & ER, #O.

PROOF. Choose &EM, & O. Let Y EB (B)' so that

dist (Y,aB ) :- inf {IZ-Y 31 Z 6 a} > I1, and YE B'. Suppose,

however, that Y 8 B B0 +UaB+. From Lemma [V.9], we conclude

. that YE aB for some u C I, where I is the half-open interval

%" with endpoints ; and ;+&, including C+&. Choose a reference

pair (B ,X") for I.f, where X (.,,) is the identity on B I;•U

cf., [V.2.j]. Then, on the one hand, the condition dist (Y,3B) >

E.I gives, since xU(Y,;) C 4 1

IX'(Y,;+&)-Y13+IXW(Y'C)-YI3 2_ El&l,

while, on the other,

Ix"(Y,;+ )-YI+Ix"(y')-Y3 Ix'(y,+&l-x-(y c)[3+IX (Y, lX (YW)13

_" *':m+¢ul~m- } -c*I&l < Zl&I.

.o
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3
This contradiction implies that Y E B' so BE ' '

which gives the desired conclusion. 0.

For future convenience, the following immediate consequences

of [V.1.0] are set'down:

[V.111 C 0 R 0 L L A R Y. Let M be a motion, em, and ae
(c*,c).

B 3_(B) 6or each > o.
IC

(ii) 16 c > 0, then B C B (B ) wheneveA ER,

< EE

[V.12] L E M M A. Le.t 1.4 be a nonstoationa4y motion (.6o c* >0)

Suppo.6 e z 6 i, ,E 3.

o 1o

W- IS- z E , thei Z B 60A < - dist (Z,3 a .

(ii) 1 Z E B;, then z EC ' 6o k < L dist (ZaB).c*

(iii) 16 z ras and 60, then B3(Z)rnB+ # and

B (Z)IB' # 604 &I < 66 .::
'. I *

P R 0 0 F. (i) Set n := dist (Z,aB ) then n > 0. Fix & Cm,

* : with 0 < IkI < * n, and suppose, contrary to the conclusion, that

Z"C50+ - B+ - B' +U5B,+,. Let I denote the half-open interval

including + with endpoints 4 and +& Using Lenma [V.9],

there must exist u E I such that Z a s8, whence Z - X(Pzu) for

some P C aR; (R,X) is any reference pair for M. Since Z s°." r

e'

a "'. - , , '.<"'.:c," ;rL;r"< ;..' ' '..-.".",, ' ,.-..'v .- ".,,,".-"- .:..:..,.'.'..,,....,..,...''''
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X(Pz) 6 3B we must have

X(,I-X(Pzg 3X(,+)-X(PzP)13 2-n'

while the sum on the left in this inequality is also < c*{klI-I+4+ -I} =

c*~l < n. This impossibility shows that Z 6 s°  and completes the

proof of (i).

(ii) Retrace the steps of the proof of (i), mutat,6 mutandZ6.

(iii) Choose any reference pair (R,X) for M. Then
1

Z X(Pz,) for some P6 C 8R. Fix E6R with < 1 6. Since

IX(Pz,+-< c¢ < 6,

3 . 3we conclude that X(Pz,+&) E B3(Z), i.e., B3(Z) is a neighborhood

of X(Pz,4+0 r + as Obviously, then, B3(Z)flB'¢+ 0 0. But also,

0-is regularly closed, i.e., 8 +& - 8 since X(Pz,1+&) E

a 4W X(Pzi+&) is the limit of a sequence of points in 9o +&, so3°
the neighborhood B (Z) of X(Pzc+&) must meet 80+, as well.

This completes the proof. 0.

I:. Lemma [V.12] clearly implies that, for any motion At and

any Z ER 3, the sets {; 6=IR Z C 50), {61RI Z CE B,) are

each open in R (so that {; 6R I Z 6 8r } is closed, a fact which

can also be proven more directly).

[V.13] L E M M A. Let Al be a motion, z em R 6 eR, and c > 0.I B(Z) C B, Ven B 1 M C So whenever

.
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: e witz 1-1_/c;

B 3M CB PVim B ci-;(Z)- Bi whenev.eA

, EIE W h I--I < W/c;

t AecaU Vihe convention B3(z) - :- {z}.

P R 0 0 F. (i) Observe that we actually have B 3 Z) C B. Suppose
C

that & eR and 0 < < c/c (if € - i, the desired conclusion

has already been pointed out); assume that Y EIR3 with IY-Z1 3 
<

C-cl-;l (c< ), but Y C ' B' B 5 'uB Since Y E B3 Z) C B°

[V.9] shows that there is some U ER, either lying between & and

; or equal to &, such that Y E 3B . For convenience, choose the

reference pair (B ,xS) for M, where XU(.,u) is the identity on

B. Then

IxP(Y,-)-YI3+lxP(Y,¢)-YI3 -1 lXP(Y",)-YI3

> IxU : , - l - " zl

(having noted that xU(Y,;) e 3B, so IxU(o-zl 3 ' c), but also

IxU(y,;)-YY1+xU(,t,&)-,zl3 'Xu(y,€)-xU(Y'P)13+lXU(Y,¢)-xU(y,,.)1 3

_c*(l¢-uJ+J¢-ul) "I- €1

this impossibility implies that Y E B. Thus, (Z) - C Bo

v .;. .
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and the proof of (i) is complete.

(ii) Observe that we actually have B 3(Z) C B'-°; since 8'
3 3is regularly open, it follows that B (Z) C B Assume that Y EIR

ih I 3 , CS'.J Assum tha E EBwith IY-Zj 3 < c-c1- , but Y 6 B , where E]R has been chosen

with 0 < 1&-; < /c. Since Y 6 B 3(Z) C 5', [V.9] implies that
E

..-**" there exists a 6 6M with the properties listed in the proof of (i).

Retrace the steps of the proof of (i) to arrive at a contradiction,

forcing the conclusion that Y 6 B' hence that B _ _ (Z)- C B'. 0.C-cl&-cl

Recall the definition of the set A Cm 3  associated with

[V.14] L E M M A. Let A CM 4  and em. Then
..

(.i) (A°) C (A)°;

(Z.i) (A) C CA-) ;

(iii) a(A) C (MA)

P R 0 0 F. (i) Suppose Y C (A°) . Then (Y,C) E A0 , so there isS2
some c > 0 such that { ry(Z)+,-_21/2) 1 < c implies (Z,&) 6 A.AA

Thus, in particular, ry(Z) < e implies -(Z,;) E A, or Z 6 A

Consequently, B 3(Y) C AC, so Y E (A )O

(ii) Suppose Y E (A). Then B(Y)fA 0 0 for each E > 0,
E C

so for each £ > 0 there is some Y EI 3  such that ry(Y) <

4and Y¢I A. Then, for each c > 0, (Y¢,C) 6 B (Y,C)*A, giving
- (Y,4) 6 A-, so that Y 6 (A-)

4 'd

p.
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(iii) :
a(A ) = (A )-(A )'- = (A )-C(A') ) C (A-) NA'-)

- (A- r,)A - (A)

where we have used (ii) and the obvious facts that (A)' = (A')

and A 1r 24- (A1r)A 2), V or AA 2 C 0.
1m1,,0

We are now prepared to prove that the sets, B and Q2,

intrinsic to a motion M, possess a number of desired properties.

4 a 4[v.15] T H E 0 R E m. Let M be a motion, and lB CIE a Icm

the a6.ociated eet6 a.6 in [V.3]. Then

(W m i6 co.6ed; 9" i6 open;

(ii) 3B0 M U {80{41) go - U {'XW

(iii) 3B - 3a"'- U~ {as XW~);

(Zv) z is teguta&ty cto6ed; if u 4eguItaty open;

(v) n° i6 connected;

A (vi) i.6 (R,X) i6 a te6eAence pai. 6o/. M, then x*'

ptovide, a homeomotph£m o6 Am onto a33.

P R 0 0 F. (i) Let ((Y , ))I C B :- U {8 x{}} be a sequence

converging to (Yo,40 ) CEm. Note that Y n B for each n 6',

lim Yn "YO, and lim cn = €0" The proof that 3B is closed is

complete once it has been shown that (Y0, 0) EIB, i.e., that

a-

• - . o . . o . . . . % °% -° °" .• , % " o" " . - • - . . o , • . .- , ,- - • ', - ° °- , • , " , . " .. .-
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Y C B Now, if e > 0, there is an n(c) EIN such that

rY0(Y ) < c and k n-£01 < E whenever n > n(c). According to
0

[v.ll.ii], we then have B C B 3(B0) whenever n > n(c/E), where
£

E (c*,c). Assume that Ye B' : since B is closed,

A:- dist (Y,O) > 0, and it is easy to see that B 3  (Y0)nB3  (BO

0. However, choosing n > max {n(A/3), n(A/3E)}, we-find both

Y G B3 (Y0) and Yn EB C B 3(B ). This contradiction impliesIIn A~/3 0 n n A/
that Y0 B E , as required. Thus, B is closed. Then 02 :- 3,

is open.

(ii) Recall that B - B for each M S]R. Suppose we have

shown that So C C0 ) for each 4 EIR; then, [V.14.i] giving the
0 0 0 0o .0

reversed inclusion 0Ba) C (B ) - 50, we shall have OB

for all 4, whence Z 0  U {(00) B {{ , and

Q =M'0 -]B 1 a {B 'x{0}1 - U {B -x{4}). Thus, the entire

statement of (ii) will follow by establishing the inclusion B0 C

0E ) for each € CJR.

-. 3Accordingly, fix S JR, and suppose Y e 8. Then B (Y) C

B; for some c > 0. By [V.13.i], whenever & SIR with C- _/c,

i.., - <- I+C then B3  M C Bo With this fact,

c c E C- &

it is easy to find a neighborhood of (Y, ) lying in B. Indeed, the

open "pillboxc"( ., B+ contains (Y,C) and is also

in Z, for, whenever 4- < < , then c-cj -&I > c/2 , so

'/2 ~ Y cB 3
1 _(Y) C B,; thus,

Ike
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Bc (Y+ U B (y)x{0)
2c 2c

0 0

Consequently, (Y,;) r= Po whence Y e E o. This proves that

B ; C oB) for each C R, from which statement (ii) follows, as
...

we have already decided.

(iii) Choose I GR. We shall show that (MB) C CB):

again, since B, - BC, we have 3QB) - B. Let Y E (SB);, so

0 0(Y,) E a3B. We cannot have Y B .. for then, by (ii), Y E (B ) ,

giving (Y, ) G B° , which contradicts (Y,C) G WB. Thus, Y E B

Also, since B is closed, (Y,4) e a B implies (Y,;) G B, so

.fEB B . Hence, Y EB ro'B- B 'e- - B (B is closed).

This shows that (aB) C a ) - aBe. Meanwhile, [V.14.iii] gives

aOB3 ) C (SB) *. We have then shown that (B), = aB,, for each

;E 6R, which implies the assertion of (iii), for now we can

write

a- { (B) x {;}I U 095 -{;}I.

.4 0-
(iv) We must show that B = B . Since B is closed,

B- CB. Now let (Y,;) GB, so Y B i .8- the latter

equality holding since B is regularly closed ([V.l.i]). There-

fore, there is a sequence (Y in 80  converging to Y.

*,,. . .- . . .. - . . .,. . . - . . . - . ... - . . . . .. .. . - . . -. . . , . . . . . -. . . .- -.- . .... . . . ... . .A:.4~ ** **~4
,'t;g',,',,e, '# ,o~,,.. ",.,,.e. ,,., r ,',,,,. ,_. ... .',-. .- . .. .-.. - . .- . .,.- .- -. .. . • ... -.. . . .. . .. . .. , ., A ,, a>..../



4-. ]

-28-

Certainly, the sequence ((Ytr))1  converges to (Y,;), and lies

in Box{01 CB 0 9 by (ii). This shows that (Y, ) E I°- , and

completes the proof of the fact that 1B is regularly closed. But

then Q is regularly open, since 2 = I,

(v) For each OE MI, B' is open and connected in 1R
3,

so it is pathwise connected. Then B'x{O1 is pathwise connected

4 3in JR . If we construct a continuous function p: IR -R such

that p(;) C 8' for each 6R R then the function p*: IR -R m4

given by p*( ) :- (p( ),C), ER, shall be continuous, with

p*(;) 6 5'x{r} for each ; 63R. The pathwise connectedness of

U {B x{W} gg o would be an immediate consequence of these

facts, whence the connectedness of Q would follow, in turn.

Thus, the proof rests upon showing that there is a function p

* with the required properties. To construct one, choose Y EIJ3

and P > 0 such that 80 C B (Y). Since B€ C Bf
0 t lw (So) for

each ; Ei, 0, by [V.10], where Z has been chosen in

(c*,c), it follows easily that B C B-3  (Y) for each c E R,

C P

where P :' p+ diam B (in view of the inequality ry(Z) <

dist (Y,B0 ) +dist (Z,BO) +dian Bo Z EJR 3 ). Thus, we have merely

to exhibit a continuous function p: JR - R3 such that p(,) 6
3B6 ,.i(Y)' for each C EJR, so it suffices to choose any

a3 (0) and set p( ) :"Y+(+II)y, C GR.

(vi) In [V.7], it was demonstrated that X* provides a

..



-29-

homeomorphism of aRx]R onto UI {OB x{C}}, but now (iii) says

that the latter set is just M. 0.

It is essential, for later developments, to examine the set-

theoretic and topological connections between a motion (in particular,

4
between the sets 3 and SIO) and characteristic cones in JR . We

now digress to prepare some general facts in this direction, later

returning to consider their implications in the setting of present

interest.

[V.16] D E F I N I T I 0 N S. (i) Let X 3R, t CR. The

bac~k .d [6o'waAd] chatacteni6tic, or tiht, cneO with vvex a~t

(X,t) is the set C (X,t) [C+(X,t)] CR 4  given by

4 3 1

C (X,t) :- {(Y,;) EIR 4 1 Y , € t 1 rx(Y)).

• c3(t (X;] c

.' It is easy to show then that C_(X,t) - U {B 3  } and

C, MO(x-t OB {3Bc~ (X)x{&}1, where B 3XM :- WX.

(ii) Let Pr: JR4 -1-JR3  denote the projection map (Y,;)i-'

Y, for Y 6 3 , 6R.

(iii) Let X EIR3, t ]R. Define P(Xt): R3 -_*R4 by

13
P (Y) (Y, t- rx(Y)) for each Y eR 3 .
MXt)cX
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Then, for A C I4 define the tertAdotion o6 A retA-tve to (X,t)

to be the set A(X,t) C R3 given by

A(x,t) :- P (A) -={YCR P (Y) - (Y, t--r (Y)) E A}. 0.
(X, t) x, t) c x

* I. [V.17] R E M A R K S. (a) The continuity of Pr and P(X,t)'

for each (X,t) ER 4 , is obvious.

(b) If XE 3, t E, P(x,t) is clearly just the inverse

of the continuous bijection Pri C (X,t): C_(X,t) -3R, so P(X,t)

A.. 3
is a homeomorphism of R onto C_(X,t).

-44

(c) For A CR, ER, the C-section of A, A (cf.,

[V.3]), is easily seen to be just Pr (A"(R 3x{;}}).

The following alternate characterizations of the retardation

of a set with respect to a point are useful; the first and third

also afford a convenient means for visualization; cf., Figures 6 and 7.

LV.18] P R 0 P 0 S I T I 0 N. Let A cm 4 , x E R3, and t E R.

Then

WZ) A(x,t) - Pr (AnC_(X,t)) in pwzticu&a, A(X,t) i.6

non-voiZd i66 MC_(x,t) iz non-void:

(ii) A(X,t) YR31 Y 6A 1 ;

9.c rx(Y)

p

pm

. 9 . . . .. ... . . .
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FIGURE 6. Retarded sets associated with
a motion (cf., [V.18.i])
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Bt.

3B M()

C4 v.

It (Space)

FIGURE 7. Generation of ]B(X,t) (cf., [V.18.iii])



(iiiZ) Amxt) - u 0  {3B 3 (XY'nA~~ whve. B(X 3 M {X}.

P R 0 0 F. Wi If Y Cz A(X,t), then (Y, t- - r MY) E A, by

* definition of A(X,t), while clearly (Y, t- - r MY) C: C(XMO.

Since Y -Pr (Y, t- 1 r (Y)), Y E Pr (AC (X,t)). On the other
C X

hand, if YEr Pr (ArC-(X,t)), then (Y,;) 6= Ar'C(X,t) for some

6 JL 3  which must be t--Ir() since (Y, ) E C (X,t). Thus,
C

(Y' t- -r MY) E A, so Y E A(X t).

(i i) Y E- A (X, t) iff (Y, t-1 ~r MY) 6 A, iff Y E

A 1
-r x Y)

(iii) If YE6 A(x,t), set r- r(Y). Then Y E

33 Wand YE6A A Now, suppose YEC

3B* a 3 (X)rAt-,, for some > 0. Then r (Y) - c;, giving -

r Yand so YE 1 A Thus, YEr=A(X,t). 03.

CAX

.'44

A(M t)' - Pr (A'rC_ (X,t)) {YER 31 YEA 1= rAY

a-U {aB 3(M)-A' 1.;>O C;

4P
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(ii) 16 {AI 1 e 1} i.6 any family of zubet o6 R4

Vien

,' ,.. {u 1 A }(Xt) u A (Xt),

{r) {C1- A }(X1t) re n I AI(X,t).

P R 0 0 F. (1) Simply note that A'(X,t) - P- ( ' ) -i (A)'
(X ) ,t) (X, t)

* - A(X,t)', and then the remaining statements of (i) follow from [V.18].

(ii) {Ui A 1}(X,t) = (U A) U p (A(XIt)(uE I IU (Xt)

U A (X,t). The second statement is proven in the same manner. o.

[V.20] P R O P O S I T I 0 N. Let A CmR4 , X CmR 3, t EIR.

W.) IS A i6 open (co~ed], .then A(X,t) iz open [c.osed];

(ii) A(Xt)- C A-(X,t);

(iZi) AO(x,t) C A(X,t)0;

(iv) a{A(x,t)) c {aA)(x,t) - u>O {aB 3 (x)(aA)
;1. 4 t- "

P R 0 0 F. (i), (ii), and (iii) follow from the definition A(X,t) :

PX1,t)(A) and the continuity of P(x,t)' upon recalling the various
* (X~t

well-known necessary and sufficient conditions for the continuity of

a function from one topological space to another, in terms of inverse

images.

(iv) The inclusion here is proven by using (ii), [V.19.i],

and the second statement of [V.19.ii], writing

i" '.::.,.'-.,../ -. *..*-.'. ¢ %' : vv:. f'N> K . -... :% .Vx~v . ./ . .......,, ....... - . . .-.... ,.
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a{A(x,t)} A(x,t) (x,t)' A(x,t)-r 'A (x,t)

C A-(X,t)fA'-(X,t) - {A-(A'-}(X,t)

- {DA)(x,t).

The equality is simply an application of [V.18.iii]. 0.

It shall also turn out to be important to know how X is

situated relative to A(X,t), both set-theoretically and topologically.

In general, we have the following facts concerning this question:

4 3[V.21] P R O P O S I T I O N. Let A cmV X E3, t ER. Then

] xc A(x,t) i6 (Xt) e A;

(ii;) X 6 A(x,t) ° ' (x t) C A°;

(iZ- 1 x E A(X,t)-' iZ (X,t) E A-';

(iv) (x,t) C aA 6 X • a{A(x,t)}.

P R 0 0 F. (i) XC A(x,t) iff P t(X) C A. But P(xt)(X) =
i (x,t).

(ii) From (1), (Xt) C A°  implies that XC A°(X,t) c

A(X) ° , the latter inclusion being just [V.20.iii].

(iii) Using (i), if (X,t) C A-', then, since A-' -A' ° ,

we find X C A'°(X,t) C A'(X,t)° - A(X,t)'° - A(X,t)-'.

(iv) By [V.20.iv], X E a{A(X,t)} gives X C {aA}(X,t),

P S-

U

, I
..
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so (i) shows that (X,t) E aA. 0.

In general, statements stronger than [V.20.ii-iv] and

[V.21.ii-iv] cannot be made, as simple counterexamples will show. We

4
should like to identify a family of subsets of R for which the

inclusions of [V.20.ii-iv] can be strengthened to equalities, and for

which the converses of [V.21.ii-iv] are also true. Moreover, this

family should include IB and a for any motion M, and we shall

demand that any retardation of a closed (open] set in the family be

regularly closed [open]. The next definition identifies such a family.

[V.22] D E F I N I T I 0 N. Let A CiR4 . Then we say that A is of

type (ti) iff whenever X,Y E ]R3, t EJR, and (Y, t- i r (Y)) E aA,
c X

then {B 3(Y)xR)rC_(X,t) meets both A° and A'0  for each E > 0. I.

IV.23) R E M A R K S. The designation "type (tl)" is meant to be

reminiscent of the term "time-like" (which already has a technical

significance in the study of hyperbolic partial differential equations).

In the retardation notation, the condition (Y, t- - r () r
*~ cX

can be restated as just Y E Pr (aA'C_(X,t)) - {aA}(X,t). Since the

definition is symmetric with respect to A and A', A CJR 4  is of

type (tl) iff A' is of type (ti). IR4 and 0 satisfy the definition

vacuously, since each has empty boundary. Otherwise, i.e., if A is
anon-void proper subset of R, then in order for A to be of

type (ti), it is certainly necessary that A0  and A'O be non-void.

Note also that if A is of type (ti) and (X,t) 6 A, then

{B 3 (X)xRr (X,t) meets both AO and A'0  for each £ > 0, whence

.

77. : ' v . ' "- --. -'-' "€ -'€ ." . -' - - '.' " " '. - - -'
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it easily follows that (X,t) C A-hA'-; it is not surprising, then,

that if A is open [closed], it is necessarily regularly open [closed];

cf., [V.24.v], in6fra.

Finally, for X,Y ED 3, teRn, and e > 0, we record the

obvious equality

{B (Y)xIRrC _(X,t) - {(Z, t-- r (Z))J Z Em 3, ry(Z) < 0.

[V.24] P R 0 P 0 S I T I 0 N. Let A cm 4  be o6 type (tz). Choose

x E IR3 and t E 3. Then

(i) A°(x,t) - A(x,t)°;

(ii) a{A(X,t)) - {aA}(X,t) - U {aB 3 (XY')(aA)
;2.0 c; -

in pa ticiaaZt, thete is no ambiguity in the meaning oS

th~e zgmbot "C A(X,t)";

.(ii) A-(X,t) - A(Xt)-;

4L

(iv) i6 A is ctozed [open], A(X,t) i6 regultZy to.oed

[open];

() i6 A i cLo,6ed [open], A i %egutaVty c.o,6ed [open].

P R 0 0 F. (i) According to [V.20.iii], we need only prove the

inclusion A(X,t) ° C A(X,t). Then let Y 6 A(X,t). B (Y) C A(X,t)
1

for some E > 0, so Z C A(X,t), i.e., CZ, t- -r(Z) A,

3whenever Z ER 3 and ry(Z) < E. That is,

-%
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3 13{B (Y)x]R~i-C (X, t) f {(Z, t- r- MxZ) Z EIR ,r(Z < C.

In particular, {B3 (Y)xRlflC (X, t) does not meet A'0 , so we cannot
K.C

have (Y, t- - r (Y))' M a, since A is of type (tt). We do have
1 1

Y e A(x,t), so (y, t- -1r MY) E A. Thus, (Y, t- -1r MY) E

An OA)' -A
0  so Y 6 A0 (X,t), and the proof of (i) is complete.

(ii) According to [V.20.ivl, we need only prove the inclusion

{aAl(X,t) C a{ACX,t)}. Suppose YE {aA}(X,t), so that

(Y, t- I r MY) E MA. If we assume that Y C- A(X,t)0 , then, just as
*1c*x

3in the reasoning of (i), we find {B C(Y)x]R~rC (X,t) c A for some

-~ c. > 0, which is impossible, since A is of type (tX) and

(Y, t-! ~r MY) C- M. Similarly, the assumption that Y C= A(X,t) 'o

A'(X,t)0  leads to the inclusion {B 3(Y)xiR}()C_(x,t) c A' for some

6 > 0, which is again an impossibility, since A is of type (tt).

Thus, we must have YE6 A(X,t)0 'flA(X,t)'0 ' - A(X,t)'ThA(X,t) -

-. a{A(Xt).

(iii) Using (ii) and [V.19.ii], we can write

A-(X,t) - {AuaA}(X,t) - A(X,t)u{aA}(X,t)

- A(X,t)Ua{A(X,t)) - A(X,t)-.

(iv). Suppose A is closed. Then A(X,t) is closed, so

A(X,t)o C A(X,t). To prove the reversed inclusion, let Y E A(x,t).

We can suppose that Y E a[A(X,t)}, for, A(x,t) - A(x,t) 0ua{A(x,t)1

(since A(X,t) is closed) and the assumption Y FE A(X,t)0 obviously

OLON
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leads to y E A(X,t) °- . Now, by (ii), Y E 3{A(X,t)} = {aA}(X,t),

so (Y, t- - r (Y)) E A. But, A being of type (tZ), we then know

t(Y)x]R}.C (X, t) -(Z, t- 1 rx(Z))I Z R , ry(Z) < C}

meets A°  for each e > 0. Clearly then, we can construct a sequence

(Z )1 C R3  such that lir Z - Y and (Zi, t- 1 r (Z )) E A

for each i =1N, i.e., Z 6 A°(X,t) - A(X,t)°  for each i EI1. The

existence of such a sequence shows that Y C A(X,t)° - . Thus, A(X,t)

is regularly closed.

Now, suppose A is open. Then A' is closed and of type

(tz), so A'(X,t) is regularly closed, by the first part of the proof.

Then A(X,t)' (- A'(X,t)) is regularly closed, whence A(X,t) is

regularly open.

(v) .Observe that, if A1,A2 CIR
4 , then A1 - A2  iff

44

AI(Y, ) - A2(Y, ) for each (Y, ) E R: this follows directly from

(Iv.21.]. Now suppose A is closed. For each (Y,&) EM 4 , A(Y, )

is regularly closed (by (iv)), sousing (i) and (iii), A°-(Y,E)

A(Y,&) ° - A(Y,&). The equality A° -= A follows from the observation

just made. The proof that A is regularly open whenever A is open

is quite similar, so we omit it. 0.

4 3[V.25] P R 0 P 0 S I T I 0 N. Let A C7R be o6 type (ti), x ER,

and t EiR. Then

W~ XC 6 A(X,t) i66 (X,t) E aA;

."7%
.
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I

{(a) x e A(x,t) ° i66 (x,t) r AC ;

(iii) x 6 A.(x,t)- i66 (x,t) E A-;

(iv) x e A(X,t)-t i (x,t) E A-'.

P R 0 0 F. These are inmediate from [V.21.i] and the equalities

a{A(x,t)} - {aA}(x,t), A(x,t)° - A°(x,t), A(x,t)-- A-(x,t),

and A(Xt) -A'(X,t); cf., (V.24] and [V.19.i]. 0.

We can give an alternate characterization of sets of type (tk):

v [V.26] P R O P 0 S I T I O N. Let A C 4 . Then A iz o6 type

(tL) i66, wheneve, x GR 3 and t Em,

{aAl(X,t) C A°(X,t)-rA ' (X,t)- .

P R O O F. Suppose A is of type (ti). Choose X 3IR , t CER.

Let Y C {aAI(X,t), so (Y, t-- rx(Y)) E aA. Let e > 0.. We can

find (Zi€e,1 ;) and (Z2ei 2 ) EIR
4 with

I!: (l , )e {B3 (Y)xmlc (x,t)nA",

(Z2 02) E {B3 (Y)xm1lC (X,t)rA' .
le C

1 1

Clearly, C. t- - rx(Z ) and C t- - rx(Z 2 ), whence

Z C r B3 (y)rA°(X,t), Z2 6 B3 (Y)A'°(X,t). Thus, each neighborhood

of Y meets A°(X,t) and A'°(X,t), giving Y E A"(X,t)-. *At°(X,t)- ;

+Observe that equality even holds in this case, for, by [V.24],

A°(x,t)-r-A'°(X,t)- - t A(Xt)fA'°-(X,t) C A-(X,t)rA' (Xt) -
:t {A-"IA'-}(X,t) = {aA}(X,t). Of course, we also have {aA}(X,t)- a(A(X,t)}.

'%
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Conversely, suppose the inclusion holds whenever X E m33 3
t ER. Choose X EIR 3, t E6R, and suppose Y Em 3 satisfies

(Y, t- ! r (Y)) E aA. Then Y E {A}(x,t), so Y E A(X,t)-,hA'°(X,t)-.
c x

Let c > 0. Then we can find ZC E B (Y)Ao(X,t), Z E

B (Y)lA'°(X,t). It follows easily that

(Z2, t- I rx(Zi )) 6 {B (Y)x]RlrC(X,t)r 'A °

(Z, t- I Z 1 {B 3(Y)xmlflC (x,ty-wA

Therefore, A fulfills the requirements of [V.22]. 0.

Having [V.26], we can now show that Postulate [V.l.iv) yields

the following important result:

[V.27] P R 0 P 0 S I T I 0 N. Let Ai b a motion. Then the

ao.ociated &e.t6 3B and d' a-e o6-type (tz).

P R O O F. Since Q :-3B', it suffices to show that B is of type

3(tW). Choose X IER and t I 3. According to [V.26], we must prove

that

{am)(Xt) C ]B(X,t)- ' (X,t) (1)

(recall that B' is open). Suppose first that M is a null motion,

.. so that B. = B0  for each ; CIR, and B - BoXR. It is easy to see

from [V.18.ii] that B°(X,t) - )0, since OB°) = So for each emR.

Similarly, 1B'(X,t) - %, and {M)(X,t) - 3B Thus,

S{333() aso B ,,B' B "..B" . 3 . . (X.,t) ... " X, t) -.0 00 00
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having used the fact that B is regularly closed. Thus, (1) holds

in this case.

Assume now that c* > 0. Suppose that Z E {3B}(X,t), so

we have Z E (B) - aB . We shall first show that1 1t- r x(Z) t- r r(Z)

Z 63 0 (X,t)-: using [V.l.iv], choose c E (0,2n(Z, t- I rx(Z))]
C X

4~. 3and let PI,c/ 2: [-c/2, E/2] -IR be a continuous function such that

p E B3 2 (Z)- S
°  1 1 whenever 11 < f/2. (2)
t- I rx(Z)+ 

We define f,: [-e/2, c/2] -*R by
I'c

f r (Z)-rX(P, (0) for I; <_ E/2. (3)

Clearly, IfI,E(;) I S Iz-PI,c/ 2(")1 3 < c/2 if I I < e/2, by (2), show-

ing that f I,([-c/2, c/2]) C [-/2, /21. The continuity of fI,€

follows from that of pI,€/2" Using a familiar fact, we can now assert

that fI, possesses a fixed point E [-c/2, c/2]. By (3), this

number satisfies

r x(Z)+ * -r X (P i,/2(W)),

so that

1 /2(,X)Ic/2)

~ 80

t- r r(Pi,

In view of [V.18.ii], the latter inclusion implies that pi,/ 2(*) lies

|1,c°

lop... . ... .. . - ... .. - . ' . .'.," " - , , . " . -
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in B°(X,t). Thus,

pe/2E 2 B/ 2 (Z) - 0 (X,t) C B3 (Z)M 0 (X,t)

3We conclude that B (Z)flB°(X,t) 0 0 for all sufficiently small positiveC

c, so Z 61B°(X,t)-. By using the other half of Postulate [V.l.iv]

in an analogous manner, one can show also that Z S B'(X,t)- .

Accordingly, (1) holds in all cases. With this, the proof is

complete. 0.

We shall digress here briefly from the major line of develop-

ment, for the purpose of amplifying the remarks of [V.2.b]. Specifical-

ly, we intend to identify a condition which is at once reasonably weak,

easily verified, and implies [V.l.iv].

[V.28] D E F I N I T 1 0 N. A inite cone in Rn is a set of the

- form

B n (xv)c({xv+X(y-xv)I y E Bn(x), A > 01,
h 'n

wherein h > 0, 6 > 0, and xv  and x are points of Rn with

IX-XVin 6>; xv  is termed the vitex of the cone, h its height,

and sin 1 (d/IX-xvn) its vvt-tex ho6-angte. a.

[V.29] P R O P 0 S I T I 0 N. Let ({B };1 , R, x) be an ordeed

t ipte pozae in the popeLtie dv-ctbed in [V.l.i, ii, and iii]

and aso &ati64 iq the 6ottowing condZtion:

IV.l.iv]' i c* > 0, ten whenever C eR and Z e aS

I E 3
the,,te exizt 6nite cone C (Z,;) and C (Z, ) zn R

,9.

*- -._ " -' -" . ',,- ' ' . ', ' , ' - ' 
"
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with common veA.tex at Z, widt ve.ttex haZ6-anglZu e (z)

Eand e (Z,;), 4espectively, satisfying

sin e (z,) > c*/c fot i I or E (1)

and such that CI(z, ) C So and CE(Z,4) C B'.

Then the ordered tipte a.o 6ut .itts the 4equiAement6 o6 [V.l.iv],

whence it betong. to im and geyvLatez a motion.

P R 0 0 F. If c* - 0, then [V.l.iv] follows, as we have already

observed in [V.5.c]. Now, suppose that c* > 0. Choose C EIR, then

Z E as,, and let CI(Z, ) and CE (Z,;) denote finite cones in I3

as in [V.l.iv]'. Let hl(Z, ) denote the height of CI(Z,r), and

select c 6 (0,-! h2(Z,;)]. Let Z denote the point of CI(Z,4)

which lies on the axis of this cone at distance IZ-213 - C from Z.

Define pie: I-c,c] - IR3 by simply setting

p I for t~ ~c.

We shall show that s o Bo whenever I&] I C whence it shall

obviously follow that p c fulfills the requirements of [V.l.iv].

Because c < h1(ZC), it is easy to see that

B 3  1 () C C(zo C B o
F-. sin 8 (Z, )

so Z E B, with
distzI c*

dist (Z, > C. sin 6 1 ) > " c ' (2)ic

.I
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the second inequality holding by (1). Now, recalling [V.12.i] (the

validity of which derives from [V.l.i, ii, and iii] alone, as one can

easily check), we find that

e B 0 whenever ki <-dist (2,aB),a
cc

which, with (2), implies the desired result

Z 0 1 whenever 0 <i c.c

E E
Similarly, if we denote the height of C (Z,;) by h (Z,i), suppose

tht£6 0 E(Z Ethat e (0, ,)], and take Z to be the point of C (Z,;)

lying on the axis of this cone with IZ-Zi 3 = £, we can again use (1)

to conclude that

S' 1 whenever kiJ < .

C

Thus, the function E * pE( ) :- Z on [-c,c] fulfills the require-

ments of [V.l.iv]. We have now shown that, if c* > 0, [V.l.iv]
11E

holds with n(Z,;) * .min {hl(z,), h E(z,)}, completing the

proof. 0.

[V.3O1 R E M A R K. To carry the result of [v.291 over to the set-

ting in which we shall later work exclusively, again let ({8}cE-]R,x)

be an ordered triple as in [V.l.i, ii, and iii], but now assume, in

place of [V.l.ivl', that aB is a (2,3;l)-manifold for each ; 6E.

Then we can show that [V.l.iv]', and so also [V.l.iv], is fulfilled,

implying that the triple belongs 3M. In fact, let ; EM and Z C 3B,

and choose any e 6 (0, w/2): we shall show that there are finite

-.. . . . . . . -4. . , .,-. . 44 .4l . - -. . - .. I .L. .L.
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cones Cl(z) C 60 and C(Z,) C B', each having vertex at Z and

vertex half-angle equal to 6. Then, if c* > 0, since c* < c, we

can surely select 8 so that sin e > c*/c, and so find cones

satisfying the requirements of [V.l.iv]'. To verify the claim, we

note first that B0 is regularly open ([V.2.f]), so 3(B0) 0 3Bc,

and [1.2.29] asserts that so is 1-regular. Thus, we can find a

13positive p and a function 4 E CI(B (Z)) (each depending upon the

particular E IR and Z E as which were chosen) such that grad

3is non-vanishing in B (Z),P

3 EB33BP fl(Z) E (e B0Z) (i) - 01,

and

B Z) M Y E B 3z) m Ql)b 0) (1)p

(with a corresponding equality describing B'nB3 (Z)). Now, select a

number h E (0,P] such that

4, - 3Igrad 0(i) -grad *(Z)1 3 < cos e "1grad O(Z)1 3  for Ye B h(Z). (2)

Writing vaB (Z) :- v ) - Igrad -(Z)l 31 grad O(Z) (cf.,

[I.2.32.b1), for each E 6R 3l{Z}' let B (Y) :- cos - ' (i-Z1 3
1.

(Y-Z)eva 5 (Z)), z.e., e 6) e [0,n] and is the angle formed by

va (Z) and (Y-Z). The set

CI (Z,) :E {Y 6 B (Z),l{Z}' I(Y) 6 (n-B, fl)}

is clearly a finite cone in JR3 with vertex at Z, height h, and

vertex half-angle B; we now prove that C (z ) C o.: for
.

6
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yIE C (z), we can use the mean-value theorem, (2), and the obvious

facts

cos eC(Y) < cos (7-e) - -cos e < 0

and O(Z) - 0 to write, for some YZ lying between Y and Z on the

straight line segment joining these points,

O(Y) - grad O(YZ ) *(Y-Z)

grad cP(Z) o(Y-Z)+Jgrad D(Y z ) -grad t(Z)j 3 -1Y-Z1 3

. cos e (Y)'igrad O(Z)I3-Y-ZI3

+Igrad t(Yz ) -grad 0(Z)13.1Y-Z13

< {-cos 8 -Igrad (Z)I3 +Igrad 4(Yz
) -grad 4(Z) I3}1Y-Z!3

< 0.

This implies that Y CE 8, in view of (1), completing the proof.

A similar line of reasoning reveals that the finite cone

CE(Z,) :- {Y B B(Z){Z} e (Y) 6 [0,3)}

(with vertex at Z, height h, and vertex half-angle 6) lies in B'.

We return now to examine further implications of [V.1]. One

of our principal goals is the study of the retardations of the sets

Z and 9 associated with a motion M. Indispensable for this study

are the existence and properties of the family of "retardation functions"

generated by any motion, which we shall simply introduce here, intending

to provide later a more detailed exposition of their characteristics.
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=a-

S[v.31] T H E 0 R E M. Let M be a motion, and (R,x) a refeAence

paiL 6or M. CoAte,6pondLng to each p e A, x em3, and t EiR,

theAe exL6t6 a unique non-negative nunbeA T(P;X,t) with the property

rX(X(P, t-T(P;X,t))) - cT(P;X,t).

P R 0 0 F. Fix P e ZR, X GIR3 , and t 63R. Define an associated
.6 1
function F: [0,-) - [0,-) according to F(T) :- c rx(X(P, t-T))

for each T > 0. If T1 and T2 are non-negative,

JFCT2)-F(T )1.1--1 JX(P, t-T2)-x(P, t-T1  3 <  - T2-Tzl

whence it follows (since c* < c) that F is a contraction on (the

complete metric space) [0,-) into itself. Banach's contraction

mapping principle therefore yields the existence of a unique fixed point

T(P;X,t) for F, i.e., a unique T(P;X,t) > 0 for which

F(T(P;Xt)) - T(P;X,t). This is just the assertion of the theorem. 0.

We can now supply a catalogue of properties of the sets B(X,t)

and 0 (X,t), for X 1R 3  t E R, associated with a motion M.

3[V.32] T H E O R E M. Let M be a motion. Choo.6e X R and

t 6 it.

(W IB(X,t) .6 non-void, compact, and '.guLaty cto.ed;

(ii) no(X,t) -3(x,t)'; Pa(x,t) i6 non-void and egu~taW y

open;

3(zii) aaB(x,t)} - {ail(x,t) -u { xB ) rBt_ 1;

I"

>, , , ,, ' , , ,., ,- -. ., . - .. o , .. .. ... ., .... .,. ..... . . . .. , .. . .. . . . . ... .. ,
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(iV) BM(xt) ° -1B(x,t) - u {3B3 (x)n5_ ;;>O c

n, fa (Xt)- - Q"f(X't) . U aB 3 MX flB 1;
;>O c;

Vi) X rE1B(X, t) X x 'R t; x e Q (x,t) i6 xe ;

(vii) XE3=](X,t)0  i6 xe 50;JO
t

(VZ) x 4E MB(X,t) x E B

(ix) 3(X,t) and no(x,t) Ae inAniW ic -to M.

P R 0 0 F. (i) Let (R,x) be a reference pair for M. Choose any

P 6 , and let T(P;X,t) be as in [V.31]. Then

X(P, t-(P;X,t)) E t(;X,t) -1t_3 ( ;X,t)

t- 1 rX(X(, t-T(P;X,t)));

with [V.18.ii], it clearly follows that X(P, t-T(P;X,t)) E3(X,t).

Consequently, we have shown that I(X,t) 0 0. Next, since B is closed,

B(X,t) is regularly closed, by [V.24.iv]. We must show then that

Z(X,t) is bounded. For this, note that, since 5t is bounded, there

is some s > 0 for which B 3 (B ) C Bc (X) whenever s > s here,0 as t cS 0

has been chosen in (c*,c). In fact, we can take

a 0 {dist (X,B t ) +diam B t
0 c-ctt

since then, s > s implies cs > cs +dist (X,Bt) +diam 8 and,

supposing that Y 6 B ), we find, using (1.1.4.1),
cS t



rYM < dist MB +dist (X,B~ +diam B~ <.Cs.

Thus, Y E B3 Cs(W whenever Y E B?(B and s > s09 verifying the

assertion. Now, according to [V.ll.i], B C B? (B )if s > 0.
t-s Cs t 3IConsequently, if s >sa we have B C B0 (B5) C B (X), implying

0t-s cs t CS
that aB (XYs 0 for s >s. Finally, use of [V.18.iii]

Cs t-S 0

yields

IB(X,t) -U 0 {a 3 -XM U 0  faB (X)rnB

3 3UO ~~ IaB (x) ICB WX),
0~~ Cs t5s Cs0 0

so IB(XOt is bounded.

(ii) Since E0 ]B' , [V.19.i] shows that n? aXMO

IB'(X,t) -3B(X,t)'. The boundedness of 3B(X,t) shows that n MO 0) 0,

while the conclusion that MO(Xt is regularly open follows from

either [V.24.iv] (since a is open) or the fact that IB(X,t) . is

regularly closed.

.4 (iii), (iv), Wv All of (iii) and the first equalities in (iv)

and (v) are immediate from [V.24.i, ii, iii], since IB and 2aare

of type (ti) ([V.27]). The equalities QO) 0 50 o'-0 )4-

for each M E, follow from [V.15.ii]; using these in conjunction

d wiith [V.18.iii] produces the second equalities in (iv) and (v). '
(vi) By (V.21.i], XEIB(X,t) iff (X,t) EIB, i.e., iff

aX E Bt B .Thus, x~ EQ (x,t) -IB(X,t)' iff x E B.
t t.

(vii) This follows from (iv). Alternately, since lB is of
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4".

type (ti), X EB(X,t)°  iff X E B(X,t), iff (X,t) EJB °, iff

t

(viii) This statement follows just as that in (vii) (the

equality (33) t - 3Bt  is implied by [V.15.iii]).

(ix) Recall that the positions BV E]R, are intrinsic

to M. Since IB(x,t) - U OB 3(X)flB Iand a (XMt)

U>0 { B t(X) 4_1 it is clear that IB(X,t) and na(X,t) are

intrinsic to M. 0.

[V.33] R t M A R K. Let M be a null motion. In this case, all

of the retardations of 3B and n which are now cylinders, are

easily described. In fact, B. 8M =0' and n a

for each C E]R. From either [V.18.ii] or [V.18.iii], it is then

clear that IB(X,t) -80 and Sa(X,t) - 8;, for every choice of

3
X EI, t E3R. In view of this, the statements of the just-proven

Theorem [V.32] are reduced to trivialities in the case of a null motion.

The retardation functions acquire a particularly simple form in this
instance, as well. For example, taking the reference pair (B0 ,x

O )

for M, where X°(.,.): aB0 - 380  is the identity for each C E3R,

it is obvious that the corresponding retardation function, o 0, is13
given by T°(P;Xt) rX(P) for each PE aBO0 X ER , t E1R.

It turns out that these circumstances allow an investigation of scatter-

ing by stationary bodies which is, in all senses, simpler than the

analysis required in the case of a non-null motion.

•"
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[V.34] R E M A R K. It was noted that a knowledge of the properties

of the retardation functions associated with a motion is essential for

the constructions to be undertaken later. We begin here with a

description of the characteristics of these functions.

Recall, then, that if Af is a motion, with any reference pair

(R,X) for Ml there is associated via [V.31] a unique "retardation"
+

function ' T: ax]R3xR- [0,-), defined implicitly by the requirement

rX(X(P, t-T(P;X,t))) = cT(P;X,t),

(1)
for each P E DR, X ER3, t SJR.

Suppose that we think of the points of DR as "the particles" com-

prising the surface of the moving body at each instant: the path traced

by the particle P C DR is described by the function x(P,.):

JR -IR .
3 Choose X 61R ,3 t E R, and suppose that a spherical wave-

front emanates from X at time t, travelling with speed c. Let P

retrace all its previous positions in reverse order, starting from

X(P,t) at time t (i.e., "run the movie film backward, at the same

speed"). Then T(P;X,t) is the duration of time required for the

spherical wave to intercept the particle, overtaking it at the position

x(P, t-T(P;X,t)).

We might note that T itself is not intrinsic to Al, but

3
each range {T(P;X,t)I P 3 DR}, for X EIR , t JR, is an intrinsic

tThe notation "V' omits any indication of the dependence on the
particular reference pair with which it is associated; this should

cause no confusion.

.-5
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object.

[v.35] PROPO S IT ION. Let M be a motion, (R,X) a %e6-

p.. Ace 6 Jo4 MA, a.nd T: R]R3R - [0,-) the a4ociated 4etada-

V tion .nct&on.

W£ T(P;X,t) -0 Jo'L &ome P r aR, x e 3t, ter C Z 6

, - x(Pt);

(ii) T i6 e-on-tinuouh6;

(iii) i6 X: a IZKR - ]3  i ontinuou6 in it 6-L'%-t wrgumen-t,

uw6o'unt in its econd, ,then T iz uni6oAmty

',f. contnuou6;

(iv) o% each 6ixed P C R, r(P,-,.) i6 Lipzchitz continu-

u on R 4 P uni6oLmLy in P; in Lact, i6

(X1,t1), (x2,t2) E m4 ,

IT(P;X 29,t2 )_(P;Xltl) I < 1 *fx2X3+lttl) ()

P R 0 0 F. (i) Let P E 3R, XCm 3 , t eR. If T(P;X,t) - 0,

then rX(X(P,t)) - 0, i.e., X - X(P,t). Conversely, if X =

X(P,t), then T - 0 is a solution of the equation rX(X(Pt-i)) - C;.

Since T(P;X,t) is the unique solution of this equation, we must

have T(P;X,t) = 0.

(ii) Suppose Pi e R, Xi r]R3, and tt eM, for

I - 1,2: then

,'

4'tD .,. '¢ ,L'/ ..'...,-..,,.., ,.::""",, ". ',.',(?_':e ,,. .:r,,. '''.-r .e''' " - - ,...... ..'...



Fr (P ;X2,t )-T(P ;x1,t)

-Ir (X(Pt -T (P x~)))-r (x(Pi t -T(Pt)'C X2  292 222 X, ;lt

1

+ - I(P2 t2((P2 x,t )(P ,t )-r (xP1 ,t T( )I3  M

1 (2)1 1 -

Since the fntio Pg.r( 2;21tx(P 2'rP1 xt 1 )) Is cnt inuous1o

th contiui t f-T aXt (P, 1 ) ollowsP;Xg) fro th latte+ ineqlity

Thus, ' is co tnuous. )-Xp~t-~p;l~

(ii Th hyohei her is3oeseifcly ie

P E+J aR ad c , ter sa T5(P~c 1+. 0x foxhc

+%X -. x: r .
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3

Ix(Q, )-x(P,¢)I 3 < £ whenever Q 6 aRnB(p,)(P) and ER. From

the compactness of R, it follows easily that X is then uniformly

continuous in its first argument, uniformly in its second: given

E >0 , there is a 6 > 0 such that IX(P2 ,)-x(P 1 ,;)I 3 < C whenever

p1p2 E aR with P2 -Pi113 < 6. and ; EI. In view of inequality

(2), the uniform continuity of T follows.

Note that if X is uniformly continuous on aRx]R, then it

satisfies the hypothesis of (iii).

(iv) Set P1 a P2 
= P in (2) to obtain (1). Then

I T(p;X, 2)T P;ltl f l+(C*) 2})1/2

IT(P;X 2 <t2) -c* I(X2't 2)-(Xl'tl) 4' (3)

.4 4
S.e., T(P;.,.) is Lipschitz continuous on R , uniformly in

Pe CR. o.

In the following definition, we introduce the notion of the

4
"retardation" of a function defined on a subset of IR , with respect

i4

to a point in IR4 ; we do this in two settings.

p4

[V.36] D E F I N I T I 0 N S. (i) Let A c1R4 be non-void, and

f be any function on A. Let X ER3 and t 61R. If A(X,t) 0 0,

then we define the 4e tatdat on oj f with 4A6pect to (X,t) to be

the function fo(P I A(X,t)), on A(Xt), and denote it by

ff [x,t]" Thus, ff]IX,t] is given on A(X,t) by

If] (Y) : f(Pc x (Y)) - (Y, t- c r (Y)), for Y C A(X,t). (1)
[X,t] MOtr c X

.A7
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Since Y E A(x,t) iff X 6 A, it is clear that [f]

is well-defined, and is defined on A(X,t) CR 3 .

(ii) Let M be a motion, (R,x) a reference pair for M,

and T the retardation function generated by (R,X). Suppose f

is a function on aRx]R. If X ER 3 , t EmR, the 4-ta,%dation of f

with upet to (X,t)t is defined to be the function [f](x,t) on

3R which is given by

[f](xt) (P) :- f(P, t-T(P;X,t)), for P 6 3R. 0. (2)

[V.37] R E M A R K S. (a) With notation as in [V.36.i], let A be

of type (ti). We wish to emphasize the fact that the location of X

itself relative to the domain of [f][xt]' A(X,t), depends upon the

situation of (X,t) relative to A: that is, X E A(X,t) iff

(X,t) e A, XE A(x,t)°  iff (x,t) E A0 , XE 3A(X,t) iff (X,t) C 9A,

etc., because of [V.21.i] and [V.25].

(b) Let M be a motion, and suppose f is defined on one of

0 af 33wtthe sets 3, 3 , 10, or 3B, with values in Mn. Suppose X E 3

t ERI. Then, as the case may be, (f] is defined on B(X,t),

.4, (X~t]

Z (Xt), a (X,t), or aB(X,t), with values in 3P. These will be

the situations of most frequent interest. We emphasize that the

*' domain of [f] is a subset of in3 .

"I

tAlthough the same terminology is used in both settings (i) and (ii),
no confusion should arise, since different symbols are employed in the
two cases.

"I
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(c) Let M, (R,x), and T have their usual meanings. Then

X: aZx]R-..m3 , so [X](X,t): aR - . 3  is defined by [V.36.ii],

3whene'ver X EIR , t EIR. Explicitly,

[x](x,t)(P) - X(P, t-T(P;X,t)), for P e aR, XeM-', t eR. (1)Mt))

Consequently, the condition defining T, (V.34.1), can be rewritten

as

p3

rxo (xt,(P) - cT(P;X,t), for P E aR, x e3R3, t e r. (2)

*1%

% (d) On occasion, it will be convenient to employ the notation

[f](P;X,t) for either [f]t+X~t (P ) as in [V.36.i] or [f](x,t) (P )

* as in [V.36.ii]. Due regard for the context should suffice to clarify

the meaning in any situation.

(e) The question of continuity of any of these retarded

functions is certainly easily settled. With notation as in [v.36.i],

if f: A . n is continuous, then [f][X~t]: A(X,t) -em is

continuous, since P(Mt) is continuous. With notation as in

[V.36.ii], if f: aRxR M n is continuous, then [f]( : R mn
(X,tY:

Is continuous, being the composition of f with the continuous map

P$+ (P, t-r(P;X,t)) on aR into aRx]R (the continuity of T(.;X,t)

following from [V.35]).

The following fact is fundamental.

[V.38] P R O P O S I T I ON . Le,.t M be a motion, (R,x) a

kK 4~eAence paiA 6o,% M, and -r the a,ocZated 4etaAdation 6unction.

III.
4 ' 4 . ** 4
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Let XE JR3  t EIR. Then [X] (X,t): R - R3  iz a homeomorphim o6

aR omto MB (X,t).

P R 0 0 F. X: aRx]R -R 3  is continuous, so the continuity of
[X](X't) follows, as a special case of the results of [V.37.e]. Now,

suppose Pl' P2 E a., and [x](Xt)(P1) - [X](Xt) (P2). From

(V.35.2), we find that T(P1;Xt) - T(P2;X,t); denoting the commnon

value by i, then X(Plt-i) - X(P2,t-i). Since x(',t-i) is

injective, we conclude that P1 " P2. Thus, [x(xt) is an injection.

Next, we show that (x] (R) 8 aB(X,t): recall ([V.32.iii])
/ (X't)

that MB(X,t) (:- a{B(X,t)) - {aB)(X,t)) - U > {aB3 (X)naB t},

so Y e B(X,t) iff Y 6 a3 (X).183 for some > _ 0, whence it

is clear that Y 6 aB(X,t) iff Y CE . But, whenever
tc rx(

P R, [X] (x,t) (P) - x(P, t-T(P;Xt)) 6 -t-T(P;Xt)

a4.1 , so (X (P) 6 MM(X,t) for each P e aR.
t- 1 [r x]x (P)) Xt)

c X (X~t)

On the other hand, suppose that Y E a3(X,t). Then YE aB
t- (Y)

1 1
X(R, t- c rx(Y)), so Y - X(Py, t- Mr(Y)) for some Py e aR.

CX 1 1
Obviously then, c- r (Y) - rX(X(PY, t- 1 r(Y))), from which we

c X X C X
infer that 1 r (Y) - T(Py;X,t). Finally, Y- x(Py, t-T(Py;Xt)) -

c X YY Y

[X](xt)(Py), . Y [X] t)OR). These facts show that

(XI~ ( -A aB(X,t), as claimed.

Gathering the results to this point, it has been shown that

[X](X ) is a continuous bijection of aR onto a3(X,t). But the

'I't
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compactness of DR (and the fact that a]B(X,t) is Hausdorff, of
-;-1

course) implies the continuity of [XI(x): ]B(X,t) D R. This

completes the proof. 0.

[V.39] N 0 T A T I 0 N. Recall that, for ; E], we write

38 DR for the inverse of the homeomorphism xC :- X(-,.) taking

DR onto 38S, whenever M is a motion and (R,X) is a reference

pair for M. Now we know that B - U O {B x{O}1, so Corollary

[V.8] states that (Z,;) ",- (z) is continuous from M]B onto DR;

since this map is defined on M3, its retardation with respect to

any (Xt) 1R4  is defined, as in [V.36.i], as a function on

33(X,t). In keeping with the notation already introduced, we shall use

the symbol [x-I ]  for this retardation. Thus,
[x,t

,X,, I 1XlM :- X-  1 (Y), for each Y E M (X,t).
t- r ('

c X

We can identify this as the inverse of the homeomorphism [x](Xt)

of DR onto 3B(X,t); this is the essential content of the next

observation.

[V.40] P R 0 P 0 S I T I 0 N. Let M be a motion, (R,x) a %ejeAence

paiA 604L M, and -r the aA.6ociated %et.a.Ada.tion 6unction. Let

3" x Im and t rn. Then

1, 1[XI, [X I:. ,_ (Z} [Xxt 0 [xlix,;()

=1

(Z) r(X (Y);X,t) r -)

t- 1 rx(Y)'S.

% ;

-- -. . . .....-
*0'., * '.,.. .. 4. . . . . . I ' RAA~A A _.~~ S
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% T([X] t ,t) (Y);X,t) r- rx(Y), for each Y E MB(X,t). (2)
rC X

P R 0 0 F. Let Y E :B(X,t). Then PXty (Y) is the unique•~ P (X , t)( ) isheuie

point of R for which Y - [X](x,t)(Py) - X(Py, t-T(Py;Xt)), so

P _ ; - (Y). Since T(Py;X,t) - x(X(PY t-T(Py;Xt))),Y = x-1 t (Y) " c

we find that T(Py;Xt) - c x(Y), whence PY- l rx. (Y)

c X

IX']xt(Y). This gives the first statement of (ii), and also shows
[X,t]

that [(x ,t (Y) - [X -1x t1(Y) for each Y E a(X,t), so [X-I

is an extension of [(xt). Since the domain of [X- I[x,t] is

also a3(X,t), the equality in (i) follows. The second statement in

(ii) is then an immediate consequence. 0.

The retardation facts also enable us to make an assertion con-

cerning the intersection of any backward characteristic cone with MJB,

for any motion M.

[v.41] P R 0 P o S I T I 0 N. Let M be a motion, (Rx) a

uee.Lence paia& 604 M, and -r the a,6oc.iated %ta'dation 6uncton.

Let X eR 3 , t ER. Then .the m p [x*](XOO

[x*](xt)(P) - ([x](x,t) (), t-T(P;X,t)), P E 3R,

plovide.A a homeomotphi&6m o6 aR on.o aIWC(X,t).

P R 0 0 F. It is a simple matter to check that P(Xt) alB(X,t) is

" homeomorphism of ZB(X,t) onto WlC_(X,t). In fact, P is

3
" continuous injection of R onto C_(X,t), so P (X I a]B(X,t)

,' ., , ':-, ', , , ,.. . - , ,- .. . .. ,, <,. : " - .. ,-,.:.: • . ., ., ,-, ,% %, ,% (X,% ,t)
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is a continuous injection of aB(X,t) into C(X,t). But, if

Z aZ(X, t) , then Z E 3BZ) so P (Z) =(Z, t- 1 r (Z)) E
cXIr Z (X't) x

U-~ OsB x{41) - DIB, so the function is into D1BrC(X,t). If
MO,~ 42 W~C Mt), then Z E as and -t- Ir(Z, s Z

3B~ i ~.e., Z 6 aJB(x,t). Since P (Z) - (Z, t- 1r (Z))
-r (Z) (X,t) c X

C X

(Z;,we can conclude that P (XB(XI DEM is a continuous

bijection of aIB(x,t) onto a~nC_(X,t). The inverse of this function

is just Pri aW'C(X,t), which is continuous.

Thus, (P I a]B(X,t))OtX] DR- aWfC (x,t) is a

homeomorphismin view of [V.38]. Since, for each PG E R,

~(x,t)' a ctox(X~t)(P -( (X't) (P, x r (X

the proof is complete. 0.

Note that, for any motion Mf, the sets as (; 6 IR),

4a]B(X,t), and a]W-C (X,t) ((X,t) rGR ) are pairwise homeomorphic; in

turn, each is homeomorphic to aR, where R is any reference set

for M. Also, we have shown that a]B is homeomorphic to any aRxcJR.

Under the assumption that a reference function possess a

certain number of continuous derivatives with respect to its fourth

argument, the corresponding retardation function possesses a correspond-

ing number of continuous partial derivatives with respect to its second

set of arguments. More precisely:
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[V.42] P ROPOS I TIO0N. Let M be amotion, (R,x) a 4ee~ence

paiL 604 M, and T the ao6-ociated te.ta.4dation 6wwction.

k 3
-. UJ Scppoi~e, 6o,%~ home P E AR, X(P,*) E C (R ) whee

Pk E~i~u{-}. Then T(P;.,-) E C k R4r) P ER3k).

Moteove.'i, wheneveA (x, t) r= R fl(X (P,),) C= eRni

i.e., wheneveA (xt) e R 4  and x # x(P,t), then

T;4 (P;X,t) - ' M r~(X.X)P)X4 (X~t)( 1

1-T.P*Xt - +(riX, t)4 X

1-(PXT)- -PXt 2

and

%{1- X, i (X, t)

16 k >1 [k-r] thien each patitdevative o6

* r(P;.,-) o6 0'LdeA > 1 and < k [o6 any o4de4] can

be compu.ted i.n 3R4rx* (PRA)' by Auccu.6ive di66eAentia-

tion o6 (1) and (4).

(i) .po6 D x e u~x; 04  jlI N..,,6tAm

4

kE3N [604 each j EiN]. 16 the de94ee o6 .the mLLW-

index a 4 (0,.,i) is6 < k 1604% any ct], ~then

T;j aRxOBJf2 I E L~fBIs')

14
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Before presenting the proof, we remark that (1) and (4) are

simply the results which would be obtained by formal implicit differen-

tiation of (V.34.1), implicitly defining T. Indeed, a very short

proof can be constructed by first invoking the implicit function

theorem to show that T possesses the requisite derivatives, then

effecting the implicit differentiation of (V.34.1) (cf., the proof

of [V.47.v]). However, we choose to follow a more instructive (albeit

much longer) method of proof which provides practice in manipulating T.

k 3
P R 0 0 F. (i) P E R is fixed, with x(P,') eC CR,R ). It is

4
easy to see that {(x(P,r),i)I EJR} is a closed subset of JR

since the continuity of x(P,') on JR implies that the limit of any

convergent sequence in the set must also be in the set. Thus,

4
{(X(P,;), )j ER}' is open in JR . Choose (X,t) E {(x(P,;), )I

;ER}'. Then X # x(P,t), so r(P;X,t) > 0, by [V.35.i]. Then

d :- rx(X(P, t-T(P;X,t))) - cT(P;Xt) > 0, i.e., X # x(P, t-T(P;X,t)).

According to (V.35.1), we have

Ik(P;X,t+h)-T(P;X,t)[ < - whenever 1h : c-c* d. (5)

* c-c* *Now, we claim that if Ihi < min {c 2cc ,. then X does not lie

on the closed line segment joining x(P, t-T(P;X,t)) and

$x(P,t+h-T(P;X,t+h)) (this line segment may be degenerate, consisting

of the single point x(P,t-T(P;X,t)); in that case, we already know

the claim to be true). To see this, assume the contrary: for some
h ?R with Ihi < i - c-c* dJ there exists X C [0,1] suchL' 2CC* '

that

Si
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X x(P,t-t(P;X,t))+X{x(P,t+h-T(P;X,t+h))-x(P,t-t(P;X,t))).

Then

d < Xc*ih-{T(P;X,t+h)-T(P;X,t))j

<_c*{ Ihl+l-(P;X,t+h)-,r(P;X,t)it}

< c, f_2 + T d < d.

This impossibility proves the claim.

{d c-c*d.Baueo h

Suppose then that 0 < IhI < minT , T d Because of the

fact just proven, we can apply the mean-value theorem to the function

rx  in the following manner:

h {T (P;X, t~h)-T (P ;X, t) )1

T1 {rx(x(P,t+hT(P;X,t4h)))_rx(X(P,t-T(P;X,t)))}

rx, (Yh)"{x (P,t4h-T(P;X,t+h))-x (P,t-T(P;X,t))},

where Yh is some point on the line segment joining the points

x(P,t-T(P;X,t)) and x(P,t4h-T(P;X,t+h)). Again applying the mean-

value theorem, this time to each of the coordinate functions X E

C1CR), I - 1,2,3, we can assert that there exist thEiR, 1.- 1,2,3,

in the open interval with endpoints t-T(P;X,t) and t+h-T(P;X,t+h)

(which cannot be equal, for then we should have, from above, T(P;X,t)

T(P;X,t4h), giving h 0 0, contrary to our assumption) such that

+I
We write X'4 : 94 cf., [V.43.c], indta.

'4 c
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r(T(P;X,t+h)-T(P;X,t)}

r ir,(Yh)'X'4(P'th )'{h-{,(P;.X't+h)-T(P;Xt)}}"

we. have abused the summation convention on the right-hand side here,

but the meaning should be clear: sum on I over {l,2,3}. A rearrange-

ment of the latter equality produces

{l+rx,(Yh) X , 4 ( P , t ' ) } . I {T(P;X,t+h)-T(P;X,t)}

(6)
rX,(Y h ) ' X , 4 ( P , t -,) ,

whenever ~ ~ 0 h mnCc d . For no such h can we have
Yc cc

rx,(Yh)'X,4 (P,tz) - -1, by the very fact that equality (6) holds for

each such h; thus, (6) determ.ines the difference quotient appearing

in its left-hand side, for each such h. Now,

IYh-X(P.t-T(P;Xt))1 3  Ix(P,t+h-r(P;X,t+h))-x(P,t-T(P;X,t))1
3,

and

It-{t-(P;Xt)} I Ih-{ (P;X,t+h)-T(P;X,t)}l

< Ihl+It(P;X,t+h)-T(P;X,t)l, Z. 1,2,3,

for these same h, whence the continuity of r(P;X,.) and X(P,-)

shows that lim Yh - x(P,t-T(P;X,t)), lim th - t-T(P;Xt),h-0O h

I - 1,2,3. The continuity of X,4 (P,) gives, in turn,

lim X 4(P,t ) - X,4(P,t-T(P;X,t)), 2 1 1,2,3. Since we showed that
h-* 0

Yh X for all h in question, and X # x(P,t-T(P;X,t)), we also

'9 qq•,,
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see that lim r (X(Pt-T(P;Xt))), 1,2,3.h -* 0 X(h) r'(Pt-(;')'
£c

Finally, we show that I+r ,(x(P,t-T(P;X,t))).X, 4 (P,t-T(P;X,t)) € 0:

first, observe that (V.1.1) implies the validity of the inequality

c*, for each EIR, while Igrad rx(Y) 13 - 1 whenever

Y # X. Then the Cauchy-Schwarz inequality yields

tc
1+rxX(x(P,t-T(P;X,t)))X,4(P,t-r(P;Xt))

C*Cc£

l 1-rx2.(X(P,t-r(P;X,t))).X,'4(P,t-r(P;X,t)) I(7

>i1- ->0.
- C

1

Upon computing the difference quotient - {T(P;X,t+h)-T(P;X,t)} from
h

(6) and employing these facts to allow h - 0, it is found that

T;4 (P;X,t) exists and is given by the expression appearing in (1).

Obviously, (2) and (3) are immediate consequences of (1).

The proof of (4) is similar to that of (1). Choose i E {1,2,3}.

* (3)
For h 63, let hi :- he Again by (V.35.1),

.T(P;X+hipt)-r(P;X,t)l <4 whenever jhj < c-c*d,

and from this we deduce, as before, that if IhI < c-c* d, then X

does not lie on the (possibly degenerate) closed line segment joining

X(P,t-T(P;X+hit)) and X(P,t-T(P;X,t)). Next, observe that the

function (Y,Z) - Y-x(P,t-T(P;Z,t)) is continuous on IR x13 and is

non-zero at (X,X) (recall that X # x(P,t-t(P;Xt))). Hence, there

is some 6 > 0 for which tY-x(P,t- (P;Z,t))I 3 > ) whenever

I

U, p
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Y,Z E B6 (X). Supposing that Ihi < 6, this statement is true when

Y is any point on the closed line segment joining X and X+hi ,

and "Z - X+h . That is, if Ihi < 6, then x(P,t-T(P;X+hit))

does not lie on the closed line segment joining X and X+hi . We

use these observations to justify two applications of the mean-value

theorem to the distance function in the following computation; as

before, we also apply the mean-value theorem to each x (P,-),

1 1,2,3: suppose that 0 < IhI < min £S.± d 6j~ Then
c

1{ T(P; X~hi,t)-T (p;X, t) }
11

SL {r (X(Pt-T(P;X+hi,t)))-rx(X(P,t-T(P;X+hi,t)))}
hc X+hV-ii

,-',.,+ 1- {r.X(X(P,t-T(P;X+hi,t)))-rx(X(P,t-T(P;X,t)))}
hc i

C X(P,t-T(P;X+hi, ,t))-i (Xh)

.- 1 rx ,(Zh)'{x (P,t-T(P;X+hit))-x (P,t-T(P;X,t))}

c X(P,t-T(P;X+h,t)),i (X

Srx (Zh).x"'(P' t)"{(P;X+hi't)-(P;X't)}'
h XI h 4 hi' '

where Xh is some point on the line segment joining X and X+hi ,

Zh  is on the line segment Joining x(P,t-T(P;X,t)) and

x(P,t-T(P;X+hit)), and the th 63, . - 1,2,3, are in the open
h

interval with endpoints t-T(P;X+hi,t) and t-T(P;X,t), if the latter

are distinct; if these two numbers are equal, we choose, as we may,
t-T(P;X,t) We find, for 0 < Ihi < min d," th " t(PXt.Wec

.
%.vetoh
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C
{1"+r (Z h)-x 4 (P') {-(P;X+hit)-T(P;Xt)}

(8)
r (X(c t-T(P;X+hi't))"

Reasoning as in the proof of (1), it is easy to show that

lrm Xh X, im Zh - x(Pt-T(P;X,t)), Jim t -t(P;X,t),
h h- 0 hh-h- 0 h 0

hlm- X (P, = X, (Pt-T(P;X,t)), h him * rh Z
h -)- 4 h 4 '

r- rX,(x(P,t-T(P;X,t)), for Z - 1,2,3, and lm r,'i(X(P.t-, h "- 0 Xh'

T(P;X+hi,t))) - (x(P,t-T(P;X,t))); for the latter two results,

we use the fact that X # x(P,t-T(P;X,t)). Then, recalling (7), we

must note that

lim {1+r (Zh)°×,4(P,th)} > 1- > 0,
h O -- 0

• o ,~.-°ooo ,
Sso there is some n e (0, minm * d, 6}J for which

l+rx,£(Zh) X,4(P, > (- > 0 whenever 0 < Ihi < n. For these

h, the difference quotient - {T(P;X+hi,t)-T(P;Xt)} can be computed

from (8). Carrying this out and using the facts cited above, we can

let h -) 0 and obtain

-1r (x(P,t-T(P;X,t)))
T;(PX~) ;' (9)- cc1+rx ;(X(;,t-(P;Xt))).X,4(P t-(P;Xgt))

in view of (2), (9) is just (4).

We have shown that ;i(P;.,.), i - 1,2,3, and T;4(P;.,. )

exist on ((x(P,),;)j C C:R}'. From their explicit expressions

4
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appearing in (1) and (4) (or (9)), the continuity of these functions is

obvious. Again from these expressions, it is equally obvious that,

if k > 2, T;i(P;., and T; 4 (P;.,.) exist on {(X(P,),;) 1

O EMR' and are continuous there, whenever i,j C {1,2,3,4}. Indeed

the existence and continuity of higher-order partial derivatives of

T(P;.,) on {(x(P,),)I G ml' is limited only by the value of

k, because of the chain rule, (1), (4), (8), and the fact that T(P;.,.)

is positive on {(x(P, );)l 1 CEIR', so the function (X,t) -

rx(X](XMt)(P)) is also positive on this set. Consequently, the

proof of (i) can be completed by induction.

(ii) Now, the hypotheses of (i) hold for some k E IWf{}

and each P E DR. Thus, each partial derivative of T with respect

to its second set of arguments, of order < k if k GEIN or any order

if k - , exists on {(P,X,t) l P 6 DR, (X,t) 6 ((x(P,;),0)

E.R)' Cm , and can be obtained from (1), (4), or differentiation
thereof. In particular, each such partial derivative exists on

aRx{Z0LMl°}, for if P C DR and (X,t) E]Bo0US, then X E Btt,

tt

so XE (8t)', so we must have X # x(P,t), whence (X,t) r

{(x(P,; )l) ) ER}'. The continuity of each such partial derivative
on DRx{]30LJQ follows from the continuity hypotheses on {Dijk

and from (1) and (4), either directly or by induction.

We shall allow these remarks to suffice for the completion of

the proof. 0.

, -a.We shall next introduce, and derive the most important properties

%

:-
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of, our fundamental classes of smooth motions, denoted by 14(q)

(q ('14U{}); even though it also proves convenient to consider

motions possessing properties stronger than those imposed here, each

family of smooth motions identified in [1.5] and Part IV turns out to

be a subclass of some 14(q), and so possesses the important character-

istics which we are about to point out. Generally speaking, a motion

M will be said to be in a certain smoothness class n 14 provided

there is a reference pair (R,X) for M such that aR and X

satisfy certain smoothness conditions.

[V.43] N 0 T A T I 0 N S. (a) Let M be an (r-,n;q)-manifold.

Recall that MxR is then an (r+l, n+l; q)-manifold. Whenever (U,h)

is a coordinate system in M, set

U* :-UxIR

and define h*: U* -IRmr+l by

h*(xs) :- (h(x),s), for each x E U, s E . (1)

Then it is easy to see that (U*,h*) is a coordinate system in Mx]R.

Moreover,

h*(U*) - h(U)xR, (2)

and

h *l(i,s) = (h-l( ),s), for each (*,s) Eh*(U*). (3)

Observe that, if ((U 1 ,h 1 )}, 1  is a covering collection of coordinate

•.454 . - "- - " - " ..-- " " ". ," " . " . ". -"-"-"-". . "- . "- • • .' ..- ,-.-. .. . '- - ' -*,.- ' -
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systems in M, then {(U*,h*)} is a covering collection of
I tG

coordinate systems in MxR.

(b) Again with M an (r,n;q)-manifold, suppose that

f: H1R -]Rm is a function such that f :- f(-,;): M _3m is in

ck(M;Rm) for each E GIR (for some k e]N). Then Jf: M - [0,-)

,, is defined for each EGR (cf., Definition [I.2.10.iii]), and we can

define Jf: MxR - [O,-) according to

.f(x,;) := Jf Wx), for each x E M, CE R. (4)

'S.

(c) Whenever f is a function valued in either I or some

m7, we shall write, as we' have already in [V.42],

fc :- f, (5)
C

which should cause no conflicts with other notations.

(d) Let M be a motion, and (R,X) a reference pair for M.

Recalling [V.15.vi], X*: 3Rxm - ME is a homeomorphism. In particular,

this allows us to associate with any function f on M a function

on VaRx via

:= fox*; (6)

explicitly,

0*
f(P,;) :- fox*(P,4) - f(x(P,;),;) for P E D, E]R. (7)

[V.44] R E M A R K S. Let .1 be a motion, (R,X) a reference pair
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for M, and f a function on MB. Obviously, f can be recovered

from i:f -fx*' or, explicitly,

f(Z,;) - 0X*-l(Z,0) - 0f(x1 (Z),4) for each (Z,;) E a1B. ()

Choose (X,t) ER4and note that the two retardations f Xt

(on aB(X,t)) and If] (X~t) (on MR are defined (cf., [V.36]).

We wish to point out here the relation

(X~) MIf][,tJo X t) on a 2

between these functions. To see that (2) is correct, let T denote,

as always, the retardation function associated wi th R and x;

choosing P E aR and applying the appropriate definitions,

.f(X(P,t-T(P;X,t)),t-T(P;X,t))

-f(X(P,t-T(P;X,t)),t- 1 r (X(P,t-'r(P;X~t))))

II- f] [x,tlo(x(,t) P;~t

.5 This implies (2).

LV.45J D EF I NITIO 0N. Let M be amotion, and q C- 3Jf -1

Then M E 1(q) iff M possesses a reference pair (R,X) such that

5' (i) AR is a (2,3;q)-manifold,

X r

(i)C53'tR
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and

(iii) rank DX (P) - 2, for each P C aR, E CR. 0.

(V.46] R E M A R K S. Let M be a motion in some class 14(q), and

(Rx) a reference pair for M as in [V.45].

(a) Clearly, 3RxlR is a (3,4;q)-manifold; recall that the

inclusion [V.45.ii] means that, whenever (U,h) is a coordinate system

in aRxR, then Xoh-' c (h()x3). In particular, for any coordinate

system (U,h) in 3R, (U*,h*) is a coordinate system in aRxR, so

we have xOh*-l C q (h*(U*)  3); explicitly, note that

Xoh*-l(i,s) - X h-(i),s) - X (h-l(i)), for (x,s) E h*(U*), (1)

Si.e., whenever iE h(U) and s CR. It is, in fact, easy to see thatV3

X CE Cq(RxR;R 3 ) iff there exists a covering collection (U1 ,h1 )1

of coordinate systems in R such that xOh*-I C ((U) for

each I E I: indeed, the sufficiency of this condition follows from
(1.2.141] and the fact that {(U*,h* is a covering collection of

coordinate systems in aRx]R, while the necessity is trivial.

(b) Let (U,h) be a coordinate system in V. Since Xoh * -

C), and h*(U*) - h(U)AR, equality (1) shows that

X oh - E Cq(h(U);R3 ) whenever ; e3R. Thus, X4 C Cq( R3 ), for

each ; 61R, showing that [V.45.iii] makes sense, requiring that

rank D(X oh-l)(h(P)) = 2, or, equivalently, JX (P) > 0, whenever

PIEU and rCR.

*ir*- %* %
" " , , ' ," ' '," '- '-" - ". 4 . -"e"." . - " . . . -. - . -... . . . . . . .. Z :Z,. .. -
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(c) We can show that the derivatives 4 j exist and are

continuous on aRxR: let P E A, C ER, and (U,h) be a coordinate

system in 3R, with P E U. If Q E U, s EIR, and n EIR, with

nO0, then

1 {x(Q,s+)-x(Q,s)} - _ {X(h-l(h(Q)),s+n)-X(h-'(h(Q)),s)}

n

1 {(Xoh,-l )(h(Q),s+r)-(xOh * -l )(h(Q),s)}.

Letting n - 0, we find

D4x(Qs) - D3 (xoh )(h(Q),s), (2)

showing at once that D4X exists and is continuous on the neighborhood

UXR of (P, ). Since x RxR;R ) , the process can be repeated

q-I times, if q EIN with q > 2, or indefinitely, if q .

It is also important to note that

ID4x(P, )I3 1_ c*, for each P E aR, E ER. (3)

This bound is obtained directly from (V.1.1), since

1 {X(P,;+n)-X(P,0) < C*,

if P E aR, ; CER, and n EIR, with n # 0.

(d) Since x E Cq (R;R 3) for each EIR, the function

JX is defined on aRxR, as in (V.43.b]:

jx(P,) := Jx (P), for each P E aR, ER. (4)

.

V
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% If P eR, EIR, and {TI(P),T 2 (P)} is any basis for T R(P),

then, by Definition [I.2.10.iii],

D T1 (P)ADX (P)T
:"']x CXP " ~(P)-T-2(p l

However, if 0i Em 
3 for i - 1,2, then 81x02 is defined, and

Is 1Aa21 - 1lX 213 (cf. Fleming [15]). In the present case, we can

K therefore also write

SIDx (P)T1 (P)xDX× (P)T2 (P)13  (5)

I TI(P)xT2( P)73

Now, if (U,h) is any coordinate system in DR, with P E U, the
basis {(h1) (h(P))}2  for T (P) can be chosen, leading to the

i-i

expression

NL ;).(X~oh l),I (h(P))x(XCoh 12 (h(P)) 1 3--l ',2)=  - -, (6)

1(h_1 ) ,1 (h(P))x(h-1 ,2 (h(P)) 13

as in the derivation of (1.2.11.3). When we observe, from (1), that

(X oh- ).i(h(P)) - (Xoh*-l ),i(h(P),;), for i - 1 or 2, the local

representation (6) implies that JX 6 C(DRx), while if q > 1, we

* - even have R); the details of the reasoning required to

verify these inclusions are plain enough.

Finally, from [V.45.iii], it is clear that
S..'

3X > 0 on BRx]. (7)

The properties of the classes 14(q), q EJINUI{}, of which the

principal ones are brought forth in the following statement, provide

much of the basis for the reasoning employed in Parts I-IV.

aN

I.

-V.
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[V. 4 7] T HE 0 R EM. Suppo.6e Ai iz a motion in 14(q), 6C'L S6ome

q E Nu{-}. Le.t (R~,x) be a 4e~eAence paZ'r. 6o' Ai, with the p)Lopuxtiez

o6 Ve~intion [V.45].

WZ Se.Xec.t any ; iR:

(1) X a i3iz6 a q-imbedding, taki.ng 3R on.to

aB

(2) B0 and B~ aAe q -4egLLtaA dotrain6 in IR;

(3) ~o,% each P E aR, Dx (P): T R(P) T~ (x (p))

i.A a bijection.

(ii) Ve~ine v: amB -.iR 3 by

v(Z,C) :- aB (Z), at. eachz E m, Z E (1)

and u: aS IR by

u(ZC) :- v(Z, )OX'4(X~', ), o'eah m, ZC8 (2

Then u i6 an in-t&LnzLc, p)Lopv'tty oj M, caoLed its

normal velocity.

(iii') Rec.at the de~inZ-tion o6 the 6cunction Xe', .6e-t down

44

(1) X*: axIR -IR 4A a q-imbedcting, tatking aRx]R

on-to aB; in pa-~tcuCaAi, Jx* > 0 on a1 <R;

pt

We write v :-V , for brevity. *aB ~ {5}
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(2) lB0  and d' a~e q-tegua,% domaim n~ - 4

(3) JotL each (P, 0 E DRxnR, DX*(P,~) Ta).R(P, 0 -

T M (x*P,0) i a bijec-tion;

(4) the eteZo unit no,'imat 6ietd vaB MB IR 4 60,

a{1B0 I iz given by~

MB~t 2 1 1" 4

(3)

6 o4t each (Z, ) E 3 I;

-. (5) Jx*,6 c(aRxR); Jx* i6 giZven by

jx*(P,0) - t'(i+u 2 (x(P.;),;)!Jx(P,0)
(4)

/{,o2(PoC),jX(),;), 60,%

(iv) The Junctions6 v, v BB, and u a~'e contbiuow5 on amB.

16q EIN and q.1 2, .then v E6ql;BR)

Mand u ~(m]), white DkoV

k- koDk4Jx, and D 4u exic~t and wr~e contiuou.6 on aRxR 6o'L

k - 1,... ,q-1. 16 q - ,the atte-t 4tatemen-t Itds

with the obviouA mod icicatian,6.

(v) Let T be Vihe tetcadation Junc-tion a~tocated Rw~dh

(Rx). WheneveA (X,t) 6-IB%~nc, Vhen T(';X,t) r6

*We write v :- v,~l for brevity.

I
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T(h (.);X,t),.Gc)

p kr~k Ix(~h-1 (R)).-(X k - oh-1 )lkx
-t-tr h (x);X,t)- (5)

-1-l -1(x

6o,% each iGh(U), and 1 1,2,

wheAe (u,h) i6 any cooPdinc-te 46ystem in AR.

(vi) Fix (X, t) 6]B0Uac:

(1) (xX t) a R -iR~ i6 a q-imfbeddi.ng, takizng aR

I onto a]B(X,t);

(2) IB(X,t)o and Q.2 (X,t) ame q-AegJtat dcmnc. in

M3.

13) 6C.L each P F- al, DIX)(xMO (P): T 3R(p) -

T. Tz(xt)(Ix](xt)(P)) i. a bijection.

(4) Lest PS 6 R. An exteAiot now.at JoAr a OB(X, t) 0}

a~t (X](xMO)(P) iz given by

LV (x) +LUl](Xt (P) *grad r~ ([x](l t (1')). (6)

(5) Jf3 i6 gven on aR by

J[Xl M )(P) - [J1 X~] (P) {1-T; 4(P ;Xlt)I
3 (7)

,] (P OCU~ (P) *grdr(x W
(X,t) MOI 1 (t rOad3

do4 eaCh P 6 aR.
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P R 0 0 F. Mi We have already remarked, in [V.2.g], that X is

a homeomorphism of A onto @S, and, in [v.46.b], that x C

3 I
Cq (BR;R). It is given, in [V.45.iii], that rank DX~ (M - 2, for

each P E aR. Thus, X is a q-imbedding, and (i.1) is proven. In

view of [1.2.17.1], BB4 -4 x(DR) is a (2,3;q)-manifold. Now,

[V.l.i] says that B is regularly closed, so So is regularly

open (since s0 - (so0) and So- - S'; referring to [1.2.293, we

conclude that s0 and 13' are q-regular domains in IR 3, since

a{s01 as in this case. This proves (i.2). (i.3) follows

immediately from [I.2.17.ii].

(ii) By Mi and [1.2.31], the unit exterior normal field

:- 0 for a{B0 1 (- 36 ) exists for each ,ER, so v and
3 a{8 4

u are well-defined by (1) and (2), respectively. To see that u is

intrinsic,' let (R,X) be a reference pair for M. By definition,

there exists a continuous bijection F: 3k - DRZ such that X(Q,s)

X(F(Q),s) for each Q G ak, s 6 IR. This shows at once that D X

exists, is in C(akRIR 3 ), and

D 4i(Q~s) - D 4X(F(Q),s), for Q r= ak, s 63R. (8)

Now choose C 6 IR, then Z CE as. It is simple to show that X1M -

F( (Z)), which, with (8), yields

4X(X D 4 (x (Z),)--1()) ,;) D- X

so also

Obviously, v is intrinsic.



C t V * . - . . . -, - . . ,%-, - -

-8U-

S(Z,OD (Z), v(Z,O) (j (Z),O)
.C, 

4

Thus, u is intrinsic to M.

(iii) In [V.15.vi], we saw that X* provides a homeomorphism

of aRxR onto M3, and we are given that X* E Cq( xiR 4). Con-

sequently, to show that X*: aRxR - is a q-imbedding, we must
! demonstrate that rank Dx*(P,;) - 3 for each P IE a, ; CEIR, for'-1

which it suffices to show that rank D(X*oh*-l)(x,4) - 3 for each

(x, ) 6 h*(U*) - h(U)xR, whenever (U,h) is a coordinate system in

aR. Choosing such a coordinate system, since X*(P,C) :-(x(P,;))

for P F A, EIR, we see that

x oh (,s) a (xoh*- (9,s),s) (x(h l(),s),s)

4-. (9)A -1(xh (oh ) ,s), whenever 9E h(U), s EIR.

Then, since xoh * - I  Co(h*(U*);3), and in view of (V.46.2), for
L~f*• -*-1i

(,) h*(U*), the matrix ((X Oh )'J(x'l))i<i< 4 , lj<3 of

D(x*oh*-l (, 3): 4 with respect to the standard basis vectors

3 4of IR and IR can clearly be written

C 2X4

(X oh ) ,l&) (x oh-1 ), 2 ( ) 2 -1-
-2, - (10).(X (xoh l3(x-) QX oh-Z x,, (x ,(h-l 6), )

V0 0 1

Z'1-1
We know that rank D(x oh )(x) rank DX (h I)) 2, by condition2,b cnito
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[V.45.iii], so the indicated upper left-hand submatrix in (10) has

rank 2, whence it follows easily that the matrix (10) itself must have

* 4
rank 3. Thus, X is a q-imbedding of AIR into 3R , and (iii.l)

is correct.

To prove (iii.2), we can now reason as in the proof of (i):

directly from (iii.l) and [I.2.17.i], a1B - X*(a1WIR) is a (3,4;q)-

manifold. By [V.15.iv], IB is regularly closed, so a{]Bo} - DB,

a - , and M is regularly open. Thus, [1.2.29] allows us

to assert that B0 and 0 are q-regular domains in IR

(iii.3) is statement [I.2.17.ii],phrased in the present setting.

Since 1 ° is a q-regular domain, the exterior unit normal

field v :W v for a{B °}  (M l) exists; we must show that the
3{B}

representation (3) holds. To see this, we begin by observing that if

Q 6 DR, s E3R, and {T1(Q),T 2 (Q)} is a basis for T R(Q), then, by

Remark [1.2.5], {T (Q) e(4) T(iQ)e 4) e(4) } is a basis forIe1ar 2 i .

T3RxIR(Qs); by (iii.3), Dx*(Q,s) carries the latter basis to a

basis for T M(X*(Qs)). Choose e 3R, ZI6 3 (so (Z,;) 6 B)

and set P :- x-1 M),so (P,) x*-l (Z,). Let (U,h) be any

coordinate system in DR with P 6 U. Now, Dhl(h(P)): IR2 _ T (P)

2
is a linear bijection, so it takes any basis for R onto a basis

for Ta (P), which, in turn, Dx (P) maps to a basis for TaB (Z),

because of (i.3). Thus, we can construct the basis {ThI(P),Th2 (P)}

for T R(P), where %

%-

...
• • .. -. . o o ° .- •o-. .". -° . • - . - -$ ° - .*.." 'o . . . . . -° ° .
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Thi(P) :- Dh (h(P))e. 2 , i 1,2, (1i)

thence producing the basis

{DX (P)ThI(P), DX (P)Th2 (P)} (12)

for T a(Z) and the basis

{DX*(P, C)Ti MPe 4i DX*(P,C)T h (P)e 4i )* (P, ;)e 4~ (13)

for TB(Z, ) (noting that (Z,c) - x*(P,)). We claim that the
elements of the latter basis are given by

Dx*(P,;)Tji(P)e( 4 ) . (x oh-) (h(P))e(4), i - 1,2, (14)

(4) (4). (4)
DX*(P,;)e 4 x9J4 (P,C)e j +e4  . (15)

To prove (14), observe first that the matrix of Dh*-l(h*(P,;)): JR3 -.. 4

with respect to the standard basis vectors of R and IR is, from

(V.43.3),

(h ), (h(P)) (h-) 1 2 (h(P)) 0

(h-l 2(h(P)) (h-l) 22 h()
((h*-l) (h*(P' ))) 1<i<4 ( 2 (h(P)) (16)

.jD3 (h - 1 ) 3 (h(P)) (h - 1 )i72 (h(P)) 0

-40 0 1

Thus, for i - 1,2,

Dh -(h'(PC))e ". )", .(h(P))e (. (Dh-. (h(P)), (2) I .(4)

TMe(4) (17)
hi~(P



-83- -

Also' using the matrix (10), with i - h(P),

D(x*oh*-l (h*(p ())e3) (x(h(P"e 4 ) for i 1,2. (18)
)(hi((P))i , foroh /1,2.ie18

From the definition (1.2.10.1), and accounting for (17) and (18), we

compute

* D (,C)T (4)(4)DX h )T~h(P)e 4) D(X*oh* - ) (h*(P,C))o{Dh*l(h*(P,,;))}-lThi (P)e4

* *-i *(3)M D(X oh )(h (P,C))e 3

(xoh-),, (h(P))e i4) for i (),2,

which is just (14). Proceeding to the verification of (15), we see

that

Dh*l(h*(P,))e(3) e (4) (19)

from (16), while, from the matrix (10),

D(x*oh*- )(h*(P,C))e( 3) . XJ (P.e (4) +e(4) (20)3 ,4(P )j + 4  .(0

Using first (19), then (20),

.DX*(P,)e(4) - D(x*oh*- 1) (h*(P, ))oDh*-l(h*(P, )))-ie(4)

- D(X*oh*-l) (h*(P,C))e(3) XJ(P, - ) e (4) e (4)

i.e., (15) holds. Let us use (14) and (15) to compute the scalar product
of Vk(Z,;)ek4)(Z,4)e 4  with each element of the basis for

Tas(Z,C) given by (13): for i 1,2,

.1
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{V (Z,C)ek u(Z,t)e4  }*(C Ojh ( P

M vi(Z,;).(X oh-1) (h(P)) - v e(Z)eDX (P)Thi (P) 0

(since DX(P)Th(P )r E TaB (Z)), and, recalling that P " X 1 ,

V -1
- (Z"~) @X 4C (X4 ),1)-U(Z, - 0,

the latter equality by (2). Thus, vk (z,)e (4)_ E N M,

and tne vector on the right-hand side of (3) is then a unit normal to

3 at (Z,). The proof of (1ii.4) shall be complete once we have

shown vk (Z, )e ( -u (Zr)e(4 ) to be an exOteAio4 normal for a at

(Z,C). To secure this conclusion, we again use the fact that B °  is

a q-regular domain, proven in (iii.2). Thus, there exist an open

neighborhood U of (Z,) in R4 and a function 0 , o, ,

cq (UMO) such that grad ( (Y,s) 0 0 for each (Y,s) e U MW

33M ' U(Z, ) -M{°yiU - {(Y,s) r U(MO ) D(Z,;)(Ms) - 0} and

enU~z MO {(Y~s) E U(ZO)I (ZO(Y,s) < 0). By appealing to Remark

. [.2.32.b], we find hat grad 0(ZO)(Z,) is an exterior normal to

3 {]B O )  (- M]) at (Z, ). Since NMB (Z,C) is one-dimensional, there

• exists some a e ]R for which

vk(g,)e (4)-u(Z,Z)e (4) ( a grad Y,;); (21)

k 4 (Z,;)

obviously, a 0 0. From (21), we can conclude that v k (Z,)e(4)-

0k

U(2w,)e 4 is an exterior normal for a{3B ° } at (Z,C) by first show-

ing that a > 0, which we now proceed to do. Since v M O, 0 for

W' ', e .' .' . . exists . _'.' some ., '-,, .,,C ' .'.'. .... for ' which '. %'. ',, - '.'.'., '.- - " """.". .
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some Z E {1,2,3}, (21) implies that D£ (Z,)(Z, ) # 0. Then we can

find an E > 0 such that Bd (Z;) C U and
E (Z,

D((Z, Ys) #0 for each (Y,s) E Bd4(zO. (22)

Note that

4
grad Z (Ys) # 0 for each (Y,s) E B (Z,;), (23)

(Z.0 E

aWB CZ,C) - {(Y,s) E B c(z, 0M ) ( Y's) - 01, (24)

and

0B4 (Z,;) {(Y,s) B4 (z, , oj (ys) < 0}. (25)

3
Define Z B (Z) -m by setting

z

0z(Y) := *(Z, )(Y,), for each Y E B3(Z). (26)

Clearly, Z E Cq(B (Z)), and

.4 D0(Y) - D 0 YO o ah YeB3(Z) and i ER {1,2,3}. (27)

From (27) and (22), it follows readily that grad z(Y) 0 0 for each

3 3Y B E(Z). Further, it is a routine matter to prove that -s B (Z)

{i r B3(Z)[ 0z(Y) - 0}, using (24), (26), and the fact that ;1B

U {B x{s}}, by [V.15.iii]. Similarly, the equality &olB (Z) I

ftE B(Z)I Oz(Y) < 0) is an easy consequence of (25), (26), and the

representation B = M U {ox{s}}, which is from [V.15.ii]. Thus,

grad 0z(Z) is an exterior normal for a{Bo ( 3B) at Z, whence

there is an & >0 such that v- ciD &D (Z) & &Dk$(Z,)(Z,;)

k,,.'.--. ,..
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for k - 1,2,3. In view of (21), we must have a = a. Thus, a is

indeed positive. As noted, the proof of (iii.4) is now complete.

To prove the equalities (4), choose P e aR and ; EmI; using
the basis {TJ (P)e( 4 )  Th (P)e (4), e(4) } for T M,) constructed

hi j h2 1e , 4  fo r x

as in the proof of (ii.4) by selecting a coordinate system (U,h)

in aR with P E U, the definition [I.2.10,1ii] says that

IDX*(P, )Ti MPe 4)DX*(P, )T MPe(AD(P)e)
jX*(P, - hi h2 k48)JTJlPeM4)Tk Me. (4)A e (4),

h e Th2 ()ek e4  (

For the vectors involved in the exterior product appearing in the

numerator on the right of (28), we have established (14) and (15). For

brevity, let us write

a:- (X ohl)!(h(P)), for I 6 {1,2,3} and j E {1,2}, (29)

a4 :- x,4(p,), for i E {1,2,3). (30)

A short computation gives

ai e(4)AaJe (4)A{a k e(4).e( 4),ali 2ej u4ek 4}

1 1 1

1l 2 a4 a1 al
a 2 2 (4) (4) A (4). 1 e (4)A (4) A (4 31)

a 1  2 4 1 2 3 2 2 1 2 4

a 13a a I  a 2

1  1 2 21"2 e(4 )A (4)Ae (4)+ (4)A (4)A (4)
': + el 3 e4( e2 e3 e "

S a831 3 4 a a3  e2  3
1 2 1 2

l4

ta.- .. •
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Setting

2 a3 1 3 1 2a 1 a a a a aI
AI  1 12 1 1

3:1 -, and A 1 (32)
a2 a 2  ja2  a2 a2

h, we then have

i (4) (4)A k (4) (4) (aA 2+AiAi
a aeI A) +A Ai]}

(33)

Now, clearly, using (11), for i - I or 2,

DX (P)Th(P) - D(X oh-1 )(h (P)) (2) . (x oh-1 (h(P))e(3) ae ( 3 ) (hii j ,(4

from which we find, accounting for (32),

DX)(P)T(P)xDx(P)Th(P) - Ai e (3) A.(35)4 hl/XC h2J -

.%hSince {DX (P)ThI(P) DXC(P)Th2P) is a basis for T35 (X(P,)) (by

(i.3)), it follows from (35) that A G Na5 (x(P,)), so we have

A/IA13 - v(X(PC), ) or - -v(x(P,4), ); whichever the case,
,ii, 1  i i 2.

(a4A /1A 13 )2 {X,4 (PC)vi(x(p,),;) 2 . {u(x(P,), )}2 .  (36)

Using (35) and (36) in (33), we find that the numerator on the right-

hand side of (28) is

lai (4)A aJe (4)A{ k e(4). e(4)
ae a2e j  ta4e k  e4  }

(37)

-IDx (P)T h(P) xDx hPT (3"/{ l 2 (X(P,),;)}.

0% p # , ,e . . e ' ' ,'. ' , , , ' e ,.' # 2. ' '/J e ' ', . . % . r , , . . 2 - . ' 
.

" - " - -.. . . - . ' - . . . . . • . - . . - . - - - .
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Next, we compute

Tj Me e(4 ) ATh2 (p)ke(4) A e (4 ) Tf {II(PT22(P)T 21(P)T 1 (p),}e(4 )A e (4 )A e (4 )

hi j h2 k 4 {hl(P)h2 (P hl(Ph 2 (P1e 2 Ae 4

1 3 3 1 (4 (4)A (4)+{fTl(P)T 2 (P)-T (P)Th (P) e 3 4

2 32 3 2 1 3 4+{ (PT 3M-T3 MpT 22(P).e (4) A (4) A (4)

+{T21(P)T 2 (P)Thl h2  e2  e3  e 4 ,

whence it is easy to check that

(TJl e (4)ATk ,P, (4)A (4) (38)

T j h2 ek e 4  IThl(P)XTh2 (P)13(

Observing that, in this special case,

IDx C(P)Thl'(P)xDX (P)Th2 (P) 13
Jx(P,;) :A ;) M Thl(P)xTh2(P)13

insertion of (37) and (38) into (28) produces

Jx*(P,;) - V/(l+U 2 (X(P,€), )"Jx(P, ),

just the first equality of (4). The second equality of (4) is a simple

consequence of the first and the definition O(P,;) :- u(X(P, ),4).

Thus, (4) is correct.

Finally, the inclusion JX* E C(aRxR) shall follow from the

representation (4), once it has been established that u E C( xR),

which we shall do shortly, in the proof of (iv) (without appealing to

(iii.5)); in this regard, recall that .X C C(aRx]R) (cf., [v.46.d]).

(iv) Since we now know that IB°  is a q-regular domain, the

statements here concerning v (:- v { ) follow immediately from

4, 'I
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Proposition [1.2.31). Consider next u: B -1R. From (3),

V4  - -u.{+ on ,

4from which we first see that IV@B I < 1 on B, then that

4 . 4I(vB 2-1/2
u - -v M {1-(V on m. (39)

Thus, the statements of (iv) concerning u follow from those for

vM. Clearly, (3) allows us to use the same strategy in proving that

v possesses the properties claimed, for it shows that

- v *'{l+u2}1 /2  on aB. (40)

We choose to defer the proofs of the assertions concerning v, JX,

0and u until after we have verified (vi).

(v) Select (X,t) 6GB2 0 ; we shall use the implicit function

theorem to prove that T(.;X,t) E Cq( A). Let (U,h) be any coordinate

system in A. Since (X,t) M , we see that X 4 a5t, so rx(X(P't)) >

0 for each P r A, which gives, by [V.35.i], T(P;X,t) > 0 for

each PE ER. In particular,

-r(h (x);X,t) > 0 whenever 6 G h(U). (41)

Now choose any ix0 E h(U). Then, recalling the manner in which T is

defined,

rx(X(h-(I 0), t-T(h-l ( 0);X,t))) - cT(h-l ();X,t), (42)

whence it follows that the function (i,;)I r (X(h-( ),t- )) on

!I
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h(U)xR is positive at (i0 'r(h (x0);Xt)); the function obviously

being continuous on h(U)x]R, we therefore conclude that there exist

an open neighborhood V C h(U) of x0  and a 6 > 0 such that

r x (-X(h-l(),t-) > 0 for x 6 VO, 1 -T(h-l(x 0 );X,t)I < 60. (43)

Since x Cq(6RxR;R 3)  implies that (i,s) X-x(h (i),s) - Xoh* (i,s)

is in C q(h(U)x]RR 3), the same is clearly true of the function

('£,) '- x(hl (i),t-C). The latter fact, when coupled with (43), tells

us that the map (r,) r (X(l(i),t-;)) is in C(V 0 X(aB)), where

a :- T(h-l( 0 );X,t)-60O 8 :- T(h-l0 );X,t)+ 0' Defining F:

V0 x(a,B) -R by

F(x,¢) := - 1 r (X(h-()'t- )), for C E V0, (aB), (44)c X0

we have F 6 Cq(VoX(C, 8 )) and F(i 0 ,T(h- 1 (*);Xt)) = 0 (by (42)).

Moreover, the Cauchy-Schwarz inequality gives

F,3 (iO,-r(h-I (i O ) ;X,t))

nl+. grad rX(X(h( 1 (xO ) ,t- 0(h,,(i O ) ;X,t))),4,(h-l(ko),t-T (h-l(i0 );Xt))

(45)
>___ l X,(hl(i0),tT(h-l(i0);X,t))13_ -~ 0,

having used (V.46.3). The implicit function theorem and its proof

(cf., e.g., [VI.2]) then imply that there exist an open neighborhood

W0 C V0  of i0 and a unique function f r Cq(W0) such that

Cilf(i)) E Vox(a,S )  for each 6 W0 , f(Xo ) - T(h-l( ) ; x , t ) , and
10

f(x)- c rX(X(h-l(i),t-f(i))) - F(i,f(i)) - 0 for each i E WO . The

Uc I
'S

r" " " " " ** **",-. **,',.. * . . *. *. ', ,. , . _ . . *- % . .. , . .. _. .c% ,. -.. _o %.. . . .
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. .

uniqueness of T (cf., [V.311) implies, of course, that we must

have

f(x) - T(h- (i);X,t) for each W09

so the function xt- r(h (x);X,t) is in C(w0 ). Since x0  was an

arbitrary point of h(U), we can now assert that T(h (-);X,t) E

CW(h(U)), hence that T(-;X,t) q

The proof of (5) is now straightforward: again with (X,t) E

-..B° and (U,h) any coordinate system in 3, let us temporarily

write Th(x) :- T(h- (i);X,t), for each i E h(U). Then

Th(i)-i r (Xh- (x), t-Th(i))) 0 for each E6 h(U), (46)

and ThE Cq(h(U))" Consider the function [X] (x oh: h(U) -]R

-. given more explicitly by

"--to-l(-1 -

[x] (X,t)oh (x) - X(h -c), t-T(h- (:i);Xt))

(47)

- X(h-( ),t-Th(i)), for each i E h(U).

This is the composition of the map (i,01+ xoh*l(^, ) - X(h-

in C q(h(U)-;R3)', with -' (i, t-(h-1 (x);X,t)), in Cq(h(U);R3

showing that [X(xt)oh 6 Cq(h(U)3 A short computation, using

the composite function theorem, yields

'%

-A:p
- ' p " . ' ' 4 . .

' ' ,
. - . , W ' ' - ' ' " " " - " - " - " , " - " " " " . " o ' " 4 " " . ' " . - ' . " • " " .
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([x] (xht) ) (xoh*l) (i, t-Th N)

-T ((Xoh*-l)1,3 (xt-T h()
h,i

(48)
-(Xth() oh-) ()-rh i) .×(- 1 ) t-Th(£)

t-Th) i h,i X 4 ~ h

for x 6 h(U), j E {1,2,3}, and i E {1,2},

the second equality following from (V.36.2) and the fact that

(xoh *-I (x,) - (X;oh - 1 )(i) for c E]R, i E h(U). We can now differ-

entiate in (46), obtaining, via (48) and some rearrangement,

-1c

l+rx, j (X(h  (x)h, t-Th (x)°X
,4 (h 1 ,t- h ( ) } h,i (i)

- r (X(h - I (x),t-T ())).(X oh- 1 k(j) (49)C X,k ht-rhTx)6 )
e.

for E E h(U) and i r {1,2}.

Reasoning just as in the derivation of (45), we find that the coefficient

of T W) on the left of (49) is > 1- > 0. Thus, (49) immediately
h,i c

gives (5), upon introducing the retardation notation. The proof of

(v) is complete.

(vi) Fix (X,t) EIBUM°: Proposition [V.38] says that

(X] t aR - R3 is a homeomorphism of aR onto aB(X,t) (for any
mw4

(X,t) E4 ), while it was shown, in the course of the proof of (v),

that [X](xt)oh-l 6 Cq(h(U);R 3) whenever (U,h) is a coordinate

system in aR, i.e., that [XI~ ~ 6~ C q(aR;IR3 ) (here, the condition

(X,t) 4S]o0UQ is, in general, necessary). To complete the proof of

the contention that X](xt) is a q-imbedding, we must show that the
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rank of [X](xt) at each P 6aR is 2, or, equivalently, that

J[x](x,t)(P) > 0 for each P 6AR, which shall be apparent once

the explicit representation (7) has been verified. Indeed, we have

JX > 0 on aRx]R (cf., (V.46.7)), so [jX] (P) > 0 for each
MXt)

P C R, while the result (V.42.2) shows that I-T; 4 (P;X,t) > 0,

since 1+ grad rX(P)) [X,4(Xt)(P) > 1- > 0 for each

P E R (just as in the proof of (v), the inclusion (X,t) 6 B°C0 2G  gives

T(.;X,t) > 0 on aR, so rX([ > 0 on R, and

grad rx((x t)(.)) is defined on DR). Further, the definition (2)

and inequality (V.46.3) give ul < c* on am, whence JCI <- 1

on ARxR, and we have

I~ ~ ~[ ]~1Xt()1c(x't) (P) .grad r x([×l(x,t ) (P)) {3

{l+2[C(xt) (P)'[°](Xt) (P ) egrad rX(X](X't)(P))+[Uc2Xt) P l/2
(50)

_1-21 r oi +oc 2 1/2 oc
MUXxt),ti(P) = i-M [ (X,t)l •0

for each P E aR. Therefore, proving (7) shall also finish the proof

of (vi.l).

Turning, then, to (vi.5), choose P e R and a coordinate

system (U,h) in R with P E U. Once again selecting the basis

(ThMl2. for T (P), given by (11), we can compute J[]x (P)
{hi(P1li1l A (X,t)

in the present case from

J](S) (P)Thl(P)xD[x](X t)(P)Th2(P)13

[Thl(P) Th2(P) 3

", :,i' .. ' : ,","'?' .-" .:2,;..?''' " " 2"'".2"''.J" ' : -"-."." "j-'.M '-.-. .-'." ".'.".\ '-.-'?'-:'..i';.2'.,"; / N-
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Now,

D[XI (P)T (P) - DQfx] Oh1)h' (2)
(X~t) hi (Xt) i (2

= ([x] oh lj (h(P
(x,t)h ) (hP)ej for i e {1,2},

while we have already available the expressions (48) (in which we set

h())fo Q](X,t)oh ), (h(P)), for j 6= (1,2,3}, i 6E {1,2}.

*Thus, for i C (1,2,3),

* .. , ~{(x] (t)(P)ThPx~](,t (P)ThP }i

ijk{I(X t-(PXt)Oh )!1 (h(1))-'(h (.);X~t)l ,(h(P)).[x94] Mt) (M)

t-TP;Xt) 2 h(P)-~h -);~t)2 4(Xt) ()

E £ijk(x t-T(P;Xt) oh ) 1(h(P))-(x t-T(PX,t) oh1 ),2 (h(P)) (53)

-lh_ (.;l)2(()- j(x t-(;~)oh'1)11 (h(P)-X1Xt kP

+T(h (.);X,t),l1(h(P))-E jk t-r(P;X,t)h '92 (hP)).[X ,4] (x't)(P);

replacing '(h 1I(.);X,t), I(h(P)), for X - 1,2S by the expressions

given in (5) (with i - h(P)), and taking into account (V.42.2), the

right-hand side of (53) is

ijk t-T(P;X,t) '1(PX~~

oh'- {( oh'))%J(h(P))

-1 u kC

.4tTPXto 9 hP)-XtTPXto- 1(()



A,

(xl- t..(p; t) Oh' ImnX -( ; ' h 1( 4

-( -ii hP){Sr (X -l)[ P

t-T(P;~t~o 2tt-X(PMO X4tM

(X jut-~ t.T(P;X,t) )h- )12 (h(P)) (x o-(;~~o- " h)

and then

C C

ijk j)t X IXt (P))r [(P).Xt)(
6 6r([X] kC1 ())[
itX~k (X't) 4M) Xi (') 9 Xt

Once again, it is to be emphasized that grad r X((X](XMO(P)) exists,

since r XUIX]xMt) (P)) - CT'r;X,t) >0, due to the hypothesis (X,t) E-

SOU-0.To develop further the expression given in (54), we use (V.42.3)

to rewrite it as
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- {1{1~; 4 (P;Xlt)1.rX'2 (X,t)(P))X, 4] (X,t)(P}

-i(x h11
£ijktT(PX oh )t, (hP)( -(;~)o- ) (P)

C-

Ij~ -TPXtoh' ) (P).XtT;Xtoh- ) ,(h(P))

-{1-T; (P;Xlt)1

.{ ikx t-T(P;X,t)h- thP) - (P; h-1

5%* I~1X4](Xt)(P).C Zjk(xt..T(P;Xt)oh (,h(P))

(xt..T(P;X,t) oh 1),2 (h(P))}r X ~(X,t) (P))}.

Now, note that

Dx t-T(P;Xt) (P)T hi (P) - D(X tT(P;Xt)oh)(h(P))e (2)

- (xoh-1(3)(56)
t-T(P;X14 (3~(P ) ir { , }

Further, {DX (P)T (p))2 . being, by (i.3), a basis fort-'r(P;X,t) hi i-1

T astTPXt XPtTPXt),we must have

V :- v _(;Xt (x(P,t-.r(P;X,t))) (57)

D)(- t-,r(P;x. t) ()Thi(~~ t-T(P;X,t) (PTh2(P

ID)(t-T(P;Xt) (P)T hl (P)xDXt t(P*X~t() h2P1

* where x is +1 or -,as the case may be. Since
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[°] (X~t) (P) :" (P,t-T(P;X,t)) :- U(x(P,t-T(P;X,t)),t-T(P;X,t))

:" v(x(P,t-T(P;X,t)),t-r(P;Xt))

*X,4 (xtT(p;x,)(x(P,t-T(P;xt))),t-T(P;X,t)) (58)

0
S[v](X,t)(P)*x, 4(P t-T(P;Xt))

0
" [°](X,t)(P)e[X,4 ](X,t)(P)

we obtain from (55), using also (56) and (57),

D[x] (X]t) (P)Thl(P)xD[X] (Xt) (P)Th2 (P)

% [DXt_T(PX,t) (P)Thl (P)xDxt-T(P;X,t)(P)Th 2 (P)I3 .{l-T;4(P;X,t)} 
(59)

0oc * P)[]( ) (p)+[o](x) (P ) •grad rX([](X) M

Insert the expression appearing on the right of (59) into (51); (7)

results thereby, for, jil - 1, we have already shown that

{l-T; 4 (P;Xt)} > 0, and

• O [(P) jX(P,t-(P;X,t)) :- JXt-T(p;x,t)(P)

"-" (60)

JDxt-T(P;Xt) (P)T h(P)xDt t-(P;Xt) (P)Th2(P)13

IThl(P)xTh 2(P) 13

With this, the proofs of (vi.l) and (vi.5) have been completed.

Statement (vi.2) is proven by the same reasoning used to verify

(i.2) and (iii.2): by [1.2.17.i] and (vi.l), M(X,t) - [x](xt)(OR) is

a (2,3;q)-manifold. According to Theorem [V.32], M(X,t) is regularly

S.
#
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;%

closed; in particular, a{B(x,t)0} = aB(X,t), IB(X,t) =JB(X,t) =

E'(X,t) - f2 (X,t), and ]B(X,t) °  is regularly open. Directly from

Proposition [1.2.29], ]B(X,t) and 02 (xt) are q-regular domains

3in 3.

(vi.3) is a simple consequence of (vi.l) and [I.2.17.ii].

Turning finally to (vi.4), let P E aR. Parenthetically, we

remark that it is easy to see from (59) that [v](X,t)(P)+[°c](x,t)(P) •

grad rx(X(xMt)(P)) E N a}(IX] (P)), and it was shown in
grd (X]e m(x,t)0} (x,t) '

the proof of (vi.5) that this vector is non-zero; to prove that it

provides an exte.o'A normal to a{]B(X,t)° } at [X](Xt) (P), however,

it appears to be easiest to proceed as follows: because (X,t) J AB =

a{B}, ([x (P),t-T(P;X,t)) E aBtt(p;x,)x{t-T(P;x,t)} C
= a(B}, and IBO is a q-regular domain, it follows that there

4exist an € > 0 and, setting W :- B ([X] (P),t-T(P;X,t)), aC e (Xt)

function P E Cq(W) such that (X,t) ( W , grad (Y,s) 0 0 for

each (Y,s) C W

a{B°}'- {Y's) E Wi (Ys) - 01, (61)

and

B 0r - {(Ys) E WEI t(Ys) < 0}. (62)

Then grad D(Z,;) is an exterior normal to a{]B°  at each (Z,M )

a{]B°}r w ; in particular, using (3), it is easy to see that

t,]([X,t)(P),t-T(P;Xt)) 0 0 for some Z E {1,2,3}. Consequently,

I'I

'4
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by returning and choosing a smaller positive number, if necessary, we

can suppose that e is such that

b, I (Ys) 0 0, for each (Ys) E W . (63)
'2. £

Next, following the construction in the proof of (iii.4), define

.. B [X] Mt(P)) -3 via.

C (X~t)3"' (Y) :- *(Y,t-r(P;X,t)), for each Y E B3([×Ix t(). (64)

Obviously, s e Cq(B3X] (X ) (P))), with

grad $(Y) - b,i(Y,t-T(P;X,t))e ( 0,

(65)

for each Y E B ([X](X't)(P)),

having taken into account (63). Reasoning as in the proof of (iii.4),

it is easy to show, using (61), (62), (64), [V.15.ii], and [V.15.iiij,
that a{ 0 _ - 3 ([X]x1 (P)) Y [×](Xyt)t_~ ~~)rB-{Y r= B 3 (E (p))l kY) - 0},

t-T(P;X,t) C(XMt) B£(xM(t)(P)

and 0 ;x,t)nB 3[]X t)M) - {Y E B 3 ([X (P))l i(y) < 0},

remembering that a{B ° } - 3B and a{80 } - a8 for each EIR. Thus,
.. 3)

grad ((X](xt)(P)) - 0,i(Xl Mt)(P),t-T(p;x,t))e is an exterior

normal for a(B_ x at [x] (P), whence there exists an
t-r(P;X,t) (Mt)

a > 0 such that

.(3)

x) (P),t-T(P;X,t))e ( P ) .  (66)

4
Now, the map SI-+ (X(P,t-T(P;X,t)+s),t-r(P;X,t)+s), on mR into R

is continuous and has values on DB (cf., [V.15.iii]). Since W is
C

an open neighborhood of (x(P,t-(P;X,t)),t-T(P;X,t)), there is an

.

'-0. .'/ : 'c% -"/ '-'.' .". % .'- , , -',I _,-",'.t , - . -' .°-;, ."-..,.- . .. - . - . . .
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L. EO > 0 for which (X(P,t-T(P;X,t)+s),t-T(P;X,t)+s) E a{B°},W if

* Isi < Co l so

*(X(Pt-T(P;X,t)+s),t-T(P;Xt)+s) - 0, for Isl < 
C09 (67)

by (61). Differentiating and setting s = 0, (67) yields

.0,c Q'(X](x (P ) , t- T (P ;X ,t ) ) ' [ ,4  (P)41,4([X] t (P),t-T(P;X,t))i . ( t [X 4 (X, t) ( ,t

t0,which, with (66), gives, in turn,

0,4[X(xJ t) (P),t-T(P;Xt)) - [°](Xt)(P)o[x,4](X,t)(P)

(68)

=.- - °](x,t) (P),

the latter equality by (58). Having laid the groundwork for the proof
4. of (vi.4), let us continue by observing that W (X,t) is open in R3

(by (V.20.i]) and contains [X](x,t)(P), since

Q- (P), t- rx( 1 (P))) - (X]( (P),t-T(P;X,t)) E W
Mt) c (Xst)(X~t)

Consider the function [0][X t]: W (X,t) -IR (cf., [V.36.i]), given

explicitly by

[4](Y) :- *(Y, t- 1 r (Y)), for Y c W O(X,)." [X,t] c X

Since X I W (X,t) (because we ensured that (X,t) f W ), it follows

that [0] 6 C (X,t)), with, for Y E W (X,t) and i E {1,2,3},

1, t- 1 r1(Y))" 1 i(y)[X,t], (Y) - (Y, t- r t c r r ("

-:- i , -~ ~ . C* -. * *. .t. * , - . .
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Thus, using (66) and (68),

grad [f][X,t]([x](x,t)(P)) - 1,i([X](xt)(P),t-T(P;X,t))e(
3)

-€'4 ( [ ×]'t (X't) (P ' - ( ; ')

• 1 grad rx([X] (P)) (69)c (xMt)

-0 OCa [V] (Xt)(P)+[U I(X,t)(P

* grad rx([] (X,t) (P)).

In particular, (69) implies that grad [P][Xt]([x](XMt)(P)) 0 0, so

3we can find an e > 0 such that Bi([]( )))C W (X,t), andwe(Xcan

grad[fl t(Y) 0 0 for each Y E (X] (P,t) ). Let us next point

out that

zm(X,t) 0 )w (X,t) - 1E W C (X,t)l [X,tl(Y) 0), (70)

and

M(X,)t) 01XV ) - {Y E WC(x,t)l I [xt (Y) < 0}. (71)

To prove (70), suppose first that Y C a{]B(X,t)}W (Xt) =

DaB(X,t)nw4 (X,t): by [v.32.iii], we have Y E a 1 . and so,

using [V.15.iii] and the definition of W (X,t), (Y,t- r (Y)) E

W"BW - a{B°}(rW. Thus, in view of (61), ( [] (Y)
4 1

O(Y,t- 1 r (Y)) - 0. To prove the reversed inclusion, let Y E W (X,t),

with [l]xti(Y) - 0: then (Y,t- rx(Y)) E W and 4$(Y,t- i rx(Y)) =

0, whence (61) shows that (Y,t- -1 rx(Y)) a {B0} rW , so

. . . . . ... . . . . ... . . . . . . . ... .. . . . . .

* ~ ..... *.-*--...
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y E t{B}, WN}(X,t) - aB(X,t);w (X,t) - 3{B(X,t)°}w (X,t). Therefore,
EC

(70) is true; (71) is proven in the same manner, using [V.32.iv],

[V.15.ii], and (62) at the appropriate junctures. Now, clearly (70)

and (71) continue to hold if W (X,t) is replaced in them by

B3([X](Xt)(P)), and we can conclude that grad [][Xt]([X]cxMt)(P))

is an exterior normal for a{B(X,t)° } at [x](xt) (P); recalling (69) and

the fact that & > 0, the same must be true of [v](X,t)(P)+[° ](X,t)(P).

grad rX(X](x ) (P)). Statement (vi.4) has been proven.

(iv) (conclusion) Let q > 2: we must still show that

Dko ~ ~~ 3 k- ko
1) Ca~]R;R) , and D JX and D U are in C(aRx1R) , k - 1 ,-

4 4

or for all k if q , ®. Choose P E aR, ; EIR, and a coordinate

'.50 3
system (U,h) in aR with P 4 U. Define N: UxR -I R by setting

N ,):- c ijk{(X Oh )J(h(P))}{(X oh- )k2(h(P))I

-ijk{ (Xoh*-l)Jl(h(P),Z)}{(Xoh*-lk 2(h(P), (72)
.-.

for pE U and r Gm.

3 k, 46 C(u.] 3)

5 Because XOh* Cq (h(U)XRJR3), it is obvious that DkN

for k - 1,...,q-1, or all k if q - ". By reasoning as in the

proofs of (iii) and (vi), we can deduce that

00 N--- in Ux]R, (73)
N

with i equal to 1 or -1, as the case may be, and

The continuity of Vo, JX, and U on aRx] (for q >1) is
sufficiently obvious.

-?d
$./.,--. ... -. • 4 -, . , -. - -. .- --. .'.'.'.S - '.,. 5,,- */ .- .5 .".".. . . . -. . . -. .- .. ...- -5. . .55 -'-,.-. ,. -,'-.',* 'v ,, ''* ''.
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.7- (h__ )111 oh h- h1 in UX]E. (74)

Now it is evident that D 4v and D 4JA exist and are continuous at

(P';) for k 1 ,...,q-1, respectively, all k. Finally, since

a- (75)

-v(P'jX 4 (P?'0 for P E aR, CEIR

ko
we must have D 4u C C01R) for k -1,.. .,q-1, respectively, all k,

k 3
recalling that D X C C(VxMR~ ) for k - 1, ... ,q, respectively, all

k. This completes the proof of (iv). 0.

[V.48] R E M A R K S. (a) Let us agree to establish as standard the

notations v and u introduced in [V.47.ii].

In the following, M E 4(q) for some q C:INJ{a-, and (R,x)

is a reference pair for MA as in [V.45].

* (b) In each of [V.47.v and vi], we have required that (X,t) C

IB~' i..e., (X,t) I M3, which is in general necessary for the truth

of those assertions. Indeed, suppose that (X,t) E- MB, so that

X Cat and X - X(PX,t) for some PX 6 aR. Let (U,h) be a

coordinate system in AR with P~ 6 U. Then the partial derivatives
-1X

% ~Of T(h- (-);X,t): h(U) -IR will in general fail to exist at h(P X),

so we cannot assert in this case that. T is in one of the classes

Ck(AR). The source of the difficulty here is that r(P X;X't) - 0,

so X -[]xt(PX) and grad r~ fails to exist at [x](t (P

* Xd X7 Mt). X



Similarly, in this case we can generally say neither that [X](xt)

is a k-imbedding (although it is a homeomorphism of aR onto

3]B(X,t)) nor that MB(X,t) is a (2,3;k)-manifold for any k;

exceptions may occur if u(X,t) - 0 (and obviously do occur if M is

null). Indeed, a few rough computations in this case (X,t) E a

indicate that if u(X,t) # 0, aB(X,t) has at X a conoidal type of

singularity, the severity of which increases with lu(X,t)l, while the

sign of u(X,t) determines whether the singularity "points into" or

"out of" IB(Xt)°; if u(X,t) - 0, there is no singularity present.

We supply no details to support these rather vague statements, since we

shall have no occasion to deal with the properties of a]B(X,t) for

(x,t) E @B.

(c) The bound

Jul < c* on 3,()

following directly from the definition (V.47.2) and the inequality

(V.46.3), has already been cited. Since c * < c, the explicit

representation (V.47.3) for v B readily yields, with (1),

(4 ) 2< (c*)2 /(l+u2 = 2 V i < c v V . (2)

I Inequality (2) says that B is time-tUke with respect to either

Maxwell's equations or the wave equation, in the usual sense.

(d) Each of the functions

Ci diam B (3)

5'.

-p' ' " " " "-'". ". .'" :.,- ''''..-,. ;' .'< .'"'''" ' ,-- ''-. .:-' ' ;.,. '""'' ....
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is continuous on R. In fact, we have, for each E R,

diam B - diam aB - sup {!X(P, )-X(Q,)! 31 P,Q E aR}

- jx(PVO-XCQ C,'W13

for some PQ, C DR, by the continuity of X(', ) and the compact-

ness of DR. Thus, for any & E,

rdiam Br., -dia. B t. ix(P ,')-X(Q ,'4)3-Ix(P ,'&-x(Q ,'&13

..,' < Im x(P,¢-x(P;,&)Y31X(Q;9,)-X(Qr, 13

a similar inequality holding with the roles of & and C interchanged.

Coupling these observations with the uniform continuity of XI aRxK,

for any compact K C It, we can obviously conclude that (3) is continuous

on IR (even in the absence of a smoothness condition on M). Further,

again for each ; EIR,

a.R

whence the continuity of (4) results from that of Jx on aR ZM.

Thus, in particular, it is legitimate to speak of the (finite)

nub ers

max diamB and max ,
E K cEK

_'I.
- .

.°h -
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for any compact K C R.

(e) Fix (X,t) EIB°U0; we consider here the map [x*](xt),

proven in [V.41] to be a homeomorphism of DR onto amcC_(X,t)

(for any (X,t) EIR 4). Now, since

x*] (X,t) - [X](x,t),t-T(.;x,t)),

it is evident from [V.47.v and vi.1] that [X*](X,t) E c R

Moreover, a somewhat lengthy computation, of the sort carried out in

the proof of [V.47.vi.5], produces the representation

[X*](X,t) -. -T;4(-;X,t)}-ix] (Xt)

V.c

110[ (XIt)+[ ] ( X , t ) -grad rxO[X](x,t)

+ 2_ [I]MO)wgrad r ko[x](x,t) 13

1 o 52V "{I (X, t) + [ u c I MO, t)grad r Xo[X MOXt 1 3

+-1. [v](Xt) xgrad rxO[Xl (xt) on31 on

whence it is easy to see that

J[x*](x,t ) > 0 on DRZ.

Combining these facts, we see that [X*I(X,t) is a q-imbedding, imply-

ing that DISC_(X,t) is a (2,4;q)-manifold and, for each P E DR,

D[X*] ()P): T R(P)  -) _(X,t)([X*](X, t)(P)) is a bijection.

JLL

I". . . .V, .p . . , . , . ,',' w'' -J .. ,, , ''\ , '''""\ - , .- '" ' ,,, - ', .. . " ' """" ' ' ' " ' '
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- For the proofs of certain uniqueness theorems in Chapter 4

of Part I, we have need of a variant of the approximating-domains

result of [1.2.43] which is tailored to the geometry associated with

a motion. The appropriate statement is proven in [V.50], following

the preparation provided in [V.49].

[V.49] L E M M A. Let M eIi(i), and 6uppoze that a and

8 E i, with a < s. Th'en .theAe exists a 6 - 6(M, cL,) > 0 .6 ch

tt whenv (, z, (m) [a,8 ]  i.e., wheneveA E [ and

z E as then

Z+s.v(Z,;) 6 8' i6 0 < s < 6,

and

Z+s.v(Z,;) 6 S°  i6 -6 < s < 0.

P R 0 0 F. (The reasoning is quite similar to that of [VI.591.)

Fix E eR, then Z E as . IB0  is a 1-regular domain ([V.47.iii.2])

and (Z,) M - a{B°}, so there exist an open neighborhood of
" Z ) nI 4  1IUz

".i , U(Zin), and a function (Z,) C (U(Z) such

'S that

grad 0 M (Ys) 0 0 for each (Y's) E U(Z,) ,  (1)
.(Z,')

-.-u {(Y,s) C U(z,)I 4(,)(fs) - 0), (2)

and

-. ,.4• . . . . . . . . . . . . . . . . . . . . .."W
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B r1V Z,) {(Ys) E Ucz,)I ¢(z,)(Y's) < 01; (3)

obviously, then,

0 -)U " °-'(z,) {(Ys) E U z, )I ¢(Z. )(Y's) > 0). (4)

It follows that grad MO(Y,s) is an exterior normal for 31B

at each (Y,s) E 8B.U(z,) (cf., [I.2.32.b]). Recalling the form of

the exterior unit normal given in (V.47.3), we must then have

grad (Z, ( Y ' s )  (4) (4)
Igrad y /{l+u2 (y,s) (Ys)e -u(Ys)e

(5)

(Y,s) E 6 UcO.

3
Define grad^ (Z,;): U ( ,- by

grad- f(Z,d) :" 0 (Z,0),I *(Z,),2' (Z,;),3 ) ;  (6)

from (5), it is clear that grad^ 0 (Z~ (Ys) is an exterior

normal for aB - a{8 0 } at Y, for each (Y,s) E ]BU(z, ) . In
s s Z)

particular, it can vanish at no point of the latter set, which

includes (Z,4). Using the obvious continuity of grad- 0(Z, ) on

U(Z,C ) , we can therefore choose a positive c (Z,;) for which we

have B4  (Z,) CU and [grad- (z;)(Y's)I3 > 0 for
((Z,;)

4 U
each (Ys) 6 B (Z,;)-. Setting

MCZ,) :- sup {!grad ,(Y,s) 3  (Y,s) B4  (Z,)-},

MO'44:'S)3 
CM

0

.%4. -~ b - .. . .- . . j ....--..... ,.... ....- ..-...- .. . .. .. ...
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and

M : inf {jgrad (Z, )(Y,s)I (Y,s) E B4 ,
(Z ,(Yz,131) (Z,)

it is certainly true that M <; and m > 0.• (Z,;) m(z,;)

4'4

Now, whenever (Y,s) E B4 (Z.0 (Z,)- and I°i < E (Z,)

C '  ,/Mz), it is quite easy to see that

4. 4(Y+o. grad- 0 MO (Y,s),s) 6 B4  (Z,) C U'Z )2£~, ) U~,)

This allows us to define 4 (Y'): (Z) (Z,i) R via

( ) : (Z,c)(Y+a. grad- I,(Y,s),s) for li <(Z< )'
4Y) M (7)

for each (Y,s) E B4  (Z,)-;
'4 (Z,;)

then 6(Y's) C (Z,;)' (Z,;) for each such (Ys). We quickly

compute

y)(0) - 0 if (Y,s) E B' (Z, )-hEB (8)

iy's) (a) grad- MO)(Y+a. grad- (Z,;)(Y's),s)o grad^ Z (Y's)

for l[ •(z< )' (Y,s) E B (4 MO

and

- (s) 2 2(jYs() Igrad (Z;) (s)I 3 m(Z)

4 (10)
* for (Ys) 6 B (Z

aMO

-... Z )-.9 z,;

- o, . . . . . . ° o . o . o . .. _ • . ..
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Directly from (9), the map (Y,s,c) i-* ()(O) is continuous,

and so also uniformly continuous, on the compact set

-B B4  -× 0_X 1 i . i and satisfies (10) on
(z, 1 2" (Z (Z,

4(z, z)

SB 4  (Z,C)-x{0}. From these facts, one can easily show that there

exists a number 6(Z, ) 6 (0,. E(Z,)] for which" ZI 2 1 (Z)-

> m(z) > 0 for (Y,s) E B4
)(Z' ,) (1)

-' ~Ia! < ezo

Select any (Y,s) E 3WBB4  (Z, ) and any o E (0,6(MO

using the mean-value theorem along with (8) and (11), for some

N 6 (0,:) we can write

t M(Y+:. grad^ ep(Z';) (Y's),s) 4, *(yIs)(a)

. ., (Y'S) (0)+ iy, s) ()-

>0;

.'having already seen that (Y+c. grad- 0(ZO)(Y's)s) E U(Z, ) , and

~recalling (4), we deduce that

,%b(Y+i. grad ^ ¢ (Z,;) (Y's),s) QG.

.." This :implies, in turn, that

9.

(Ys

'a
*o ,0;



.. o

Y+c" grad' (Z M)(Ys) 6 B' whenever (Y,s) E alB. B (Z)
, s E(Z,1)

and a E (0,6ZO

Thus, since v- Igrad- o(z,;l 1 . grad^ *(Z,;) on U(Z,; ) ,

4
Y+ Gv(Y,s) E 8' whenever (Y,s) E aB 4  (Z,)s £ (Z' ) (12)

and a E (O,m MO.6(MO

It can be shown in a similar fashion that

V. Y+Ov(Y,s) 6 so whenever (Y,s) E a3B 4  (Z,;)
S(Z,) (13)

and a (-m MO6(Z,;),O).

Having (12) and (13), which hold for each (Z,;) E M], the

proof of the lemma can easily be completed: since (M) is[ca,]

compact, there can be found a finite set {(Zii) in

4(0)as ] such that {B4  (Zi,)ii covers [B"4,.([i,, i )

By setting

mn {m,(Z, 6 (z )i l

one can readily check that we obtain a number possessing the required

properties. 0.

We proceed to the desired Lemma [V.50]. See Figure 8.

[V.50] L.E M M A. Let M be a motion in 1.(q), jc scme q > 2.

-.

.. ',

-"S
*1 °
" ''"I . < < . ; '- • . ' - '; " " ; , ' " ; .' .; .. ; -. '; ." ". ' . " " " , -" . - ;, . -' -'- . ' - . ' - % ) < ' . : '



-112-UChooze a a~nd 8 E R with a < B . De -Lne, joi each c IR,
le 4

*.*G() ( aD O) (C" m by

(c,8
GE ( ): (Z,)+£('v(Z,'),0) 60tL (Z,) E (MJ) B )'

* and.6e~t

*E = 0)E := U {{Y E C dist (Y,3B >) C-;!

0c,0) (ci,B) a<8

dw~t C >O,

-: and

s C ') : a{M a4 ThtOR x (a, 6).

Then thete ex-Lzta a pozLtive coil depending upon At , and B,

Auch tha~t, 6o4 0 < IEI < cool

GE:F . a (q-1)-Zrbedcting, .takiZng m
() (ci,8)(0 S)

(Z 6 cZ < 0, Be8 i6 a no'trnae domain;

i6iL - c >O0, Z>c*, and p >0 wiLthi.

B? (B )c B3  (0), then the ze~t
C(S-a OL 0/2

B E IP :u 3 E )rf{B 3 (O)x(cz,8)}

.S .c B .c 8 .p
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i.6 a normaZ domain;

and

(iv) Vie exterior wwit norma2 fietd fo- SE C(as)

((cz, 8)m~4 { (a,8) } £ giZven by

V E - V £ -- sgn C *v o(GE(a,B) S .B (a)
(a, 8)

FuAthv,

(v) limr JG0 -1,)= ufouiZy on ( B)(a, 8 )

P R 0 0 F. The arguments here are, in many respects, similar to

those adduced in the proof of [1.2.43]; cf., (VI.68]. We shall first

make various simple observations: since q > 2, we have (at least) the

inclusion v e C (aMJ ), so that vi K is Lipschitz continuous

whenever K is a compact subset of MB. In particular, this is

true with K - (3B) [a8]' so that there exists a positive a,

depending on a, 8, for which

:'i ' [ ~~V (Z2' C2)-V (Zl'41) 13 <-- a[ (Z2, Y2-(Zl,, l)14.

whenever (Z1,9I) and (Z2 C2) e (M) [a,8]

Surely, then, {8}6 < is a uniformly Lyapunov family, for which

a set of uniform Lyapunov constants is (a,l,d), provided d E
(0, 1 ). Note also that (a)

(,2a (a),

01B) ,6 3)aNRXas

:"

% ,P' ;..:"- """:'%""4 "v"../-(" 2 </.',- .- % . -.-.2. - v- ; v 9 . -
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(Time)

B Q

BB

el (cz,B)
.' a G~a,)(Z, ,0 (aB

JR (Space)

(b) > 0

.R (Time)

(a Sz E)

JR3 (Space)

(a) C < o

FIGURE 8. Approximating domains of Lemma [V.50]

,]
4..'

4.
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being a relatively open subset of the (3,4;q)-manifold MJB, is

again a (3,4;q)-manifold. For each E GIR, (3B): B xf{} is

easily seen to be a "(2,4;q)-manifold. It is convenient to define,

4for each e EIR, GE: B -*R according to

GE(Z, ) : (Z,)+C(v(Z,),O) for each (Z,C) E ]B

(so that GC GEl (31B) and write

G[,] :e G ( 3 ])[,0]"

Observe that, for any E ]R and non-zero e with tel sufficient-

ly small (depending upon 4), we can regard [1.2.43] as giving a

C 4description of G (.,c): 3B -R; e.g., this map is a
(q-1)-imbedding and, if, say, E < 0, takes aS onto the set

{Y E ;01 dist (Y,ag) -_e}x{4}, which must then be a (2,4;q-l)-

manifold. Finally, by [V.49], there exists a positive 6" =

6*(,,a,8) such that

Z+oav(Z,) 6 B' if 0 < a <

for each (Z,) (B) .(1)
Z+CV(Z,4) 6 80 if -6* < a < 0'

(i) Let (U,h) be a coordinate system in M1B. For any

C 6 IR,

1-l -1 -1l
G oh- h +c(voh ,0) on h(U) CI3

since v 6 Cq-(B;IR3), it is readily apparent that GE oh-1 6

cq-l(h(U)1Rd). Consequently, Ge 6 Cq-l( 3 R4). Certainly, GE

.6.

"-

-.° - -o-. .-
-* - . . . .. . - - - . - .. I. . .. . )
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is then continuous. Any coordinate system in (aB)(ae) is also

a coordinate system in B, while G C G11 (am) so(a's) ()(a,S), s

C (cz,84
we can conclude as well that G 6 Mm) R), and(a, B)(age)
G0 C(()B) R4 ), for each real c.(G , C (as)

We can show that G , is injective if Icl < 1/a.

Indeed, if (Z (Z2, 6 B) with G , (Zl l
1'; 1 ( 2 9 2)[]

G[a,s] (Z2 ,C2), then C 1 M ;2 and Z1+cv(Zl, l - Z2+Cv(Z 2 ,(2 so

= ~~ a.!cI.1Z -Z 1 3
Iz2-zlI3 I I"Iv(z 2,;l)-v(zl, )13  2 a z 3*

Thus, if a.'Ic < 1, it is clear that Z1 - 2, proving our claim.

But now we can use the compactness of (DIB) to assert that

[G , ] (D[) a G ((aB)[ ) is a homeomorphism if Ic <
fcas] [ac8i,B][i

1/a, whence its restriction G r: (M) G C ( )

must also be a homeomorphism for these same e.

Now, to prove that GC is a (q-l)-imbedding for Ie
(a,8)

sufficiently small, we must prove that JGc is positive on

(3B) (a,) for such e. For this, it is clearly sufficient to

show that

lim (JG)I ( aIB) 1 uniformly on (MB)[,] (2)

since JGC, - (JG)I () . Moreover, statement (v) shall

follow immediately, once (2) has been verified. To prove (2), we

use the compactness of (.v]B) and the familiar properties of

coordinate systems to construct a family of(U } I

,hBo

-B 4 " ,, , - . .,- . , , .. Jq .- q. . . % ., % % - - % % - - " .
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coordinate systems in ]B such that I is finite and {U }

covers (B)[,, while, for each i E I, all partial derivatives

of h and voh are bounded on h (U), and IA (h-),i

is bounded below by a positive number on h (U ). Since
I 1.

(oh) -1(h 1  1 l (4) -1 4 (4)I I)~~e(voh )e +(h- 1 ). e on h (U)

a short computation shows that for, say, ICI < 1,

3 C 13

I iA 1(G h I)Ii.I i A1 ( I ,ilM -cl on h (U,)
1 1.

for each i E I, for certain positive numbers {M I Thus, in

view of (1.2.11.2),

JGCI U < I+M".IcI for each 1 6 I, (3)

for appropriate positive numbers {M')} 1 . But now (2) follows

from (3), recalling that I is finite and {U IE covers

(am) We have now shown that G is a (q-l)-imbedding

- *_ whenever Icl is sufficiently small. This implies, among other

things, that Gc ((aB) ) is a (3,4;q-l)-manifold for such
(ai,) (a,8)

C.

For the proof of the second statement in (i), we shall

first establish the equalities

GC )(() {{Y e B'I dist (Y,aB) = c(}x{}}

(4)

if C > 0,

-S.,

*1 .

,-1

W .. :.''.',. .'',, , '',:., ?,. \... .t f l ~ _ , .L. . .. '-? . - ., . ... < .. ,"-. .'? '- V<-">- .'>
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G ((aB) ) {{Y r6 B°[ dist (Y,aS -c)x{c}}

(5)

if C < 0,

whenever jIc is sufficiently small. Considering (4), we suppose

that 0 < e < min {6*, d/2, 1/(2i)}, with i being given in terms

of a in (1.2.37.iii.4]; note that A > a. Select 6 (a,8)

and Y e B' with dist (Y,DB ) c c. Then ([1.2.20]) there exists

XY E a8 for which IY-XY.3 - C and Y-Xy ' Na5 (XY), whence Y

must be given by one of X+cv(Xy,4), Xy-ev(Xy,). But the latter

lies in So, since 0 < c < 6*, so

4£

(Y,4) - (Xy+cv(Xy,),) - G (xy,)

proving one of the inclusions required. For the other, again let

S6 (a,$) and choose ZIE ., so that (Z,) E (03B)(,8). Then

G €(a )(Z,,) - (Z+cv(Z,;), ) E 5'x{;},

since 0 < e < 6". We must show that

6 :- dist (Z+ev(Zi),aB) :- inf IZ+cv(Z, )-YI3  .

The inequalities 0 < 6 < c obviously hold. Assume that the

strict inequality 6 < £ is true: appealing once more to [1.2.20]

and the fact that 0 < c < 6, we know that there is some 6 aS,

for which

IZ+cv(Z,¢)-ZI -

!I
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and

Z+Cv(Z',) =+- (2,);

clearly, it must be the case that Z # Z, by our assumption that

6< c. Since

IZ-7I 3 - '6v(2,C)-v(Z,C)1 3

< (C-6)+C 1v(", ) -v(Z,4)1 3

< (-6)+ae. IZ-z 13

1 13'

we have

,'o%

".1 z-'13 < 2(c-6) < 2e < d,
3

Z.., Z 6 Bd (Z), and we can apply the estimate (I.2.37.iii.41

to obtain

Iv(Z,;)* grad r2 (Z)l < a-r(Z,

whence

2c.ri(Z)-v(Z,)e grad r-(Z) > -2gr?(Z). (6)zz

Further,

6 2 Iz+cv(Z,)_I2 r (Z)+c 2+2Ev(Z,l)e(Z-Z),

* giving
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2Cer2(Z)v(Z,4)* grad r-(Z) +r? (Z) 62_2

Remembering that 2ic < 1, and using (6), we therefore arrive at

the impossibility

0 < (1-2i0)r(Z) < 62_E2 < 0.

Thus, 6 - c. Now (4) has been proven for all sufficiently small

positive e. An analogous argument serves to demonstrate that (5)

is correct if -min {*, d/2, I/(2i)} < c < 0.

To show that G (M) S whenever kEi is(a,5S C) (a,0S) (a,B)

small enough and non-zero, our intention is to prove that, for such

C,

S U {{Y E '! dist (Y,DB,) = C)x{4}} if E > 0, (7)

while

, U {{Y E So0 dist (Y,B8 ) -c}x{;}} if C < 0, (8)

whence the desired result shall follow, with (4) and (5). With a

few preliminary developments, (7) and (8) shall follow easily. Let

us first show that B( ) is an open set for each non-zero e.

Choose c > 0, and set

B :=4 {{y E dist (Y,a) > c}x{;}}; (9)

then M is open. To see this, suppose that (X,t) E and

write
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6: dist (Xa : inf {IY-X Y E 9B

so that .6 > c. Let

-l :=2c

We shall show that

" 3B (X)x(t-ni, t+n CB, (10)

2 10

which will certainly imply that 1B is open. To prove (10), let

Y E 3  with IY-XI3 < . (61-E). Then
3 1

+ (61-0) t

for, if IY-YI 3 < E+ T (6 1-C), then whenever Z 6

I Iz 3 Iz-X13-1x- 13-IY-kI3

6i 21 (61-0)-c- 2 (6 1-)

-0,

so t r t' (here, we have used the fact that 61 :- dist (X,@B t) =

dist (X,B t), which can easily be checked, since XE St). Now,

sp that It- n, so, obviously, <t- j <  {C+!

Combining (11) with the result of [V.13.ii], we deduce that

• M B 3
B 3 1 (Y) C'

1. - C+ ( 1-C)-clt-4I

which shows immediately that Y E B' and dist (Y,aSB) =

OI

.
.-.;

, C"-o, -• •-.- . . -. % . ° . ° . ° % ,o- .° . .. ° °" o- .° ° f °
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dist (Y B > e, since cit-41 < (61-) , i.e., + ( )-
<2 1 ' 2

C
C(t- ) > E. Thus, (Y, ) lies in lB , whence (10) is proven.

But then, as remarked, it follows that 1B is open. Now,

" 1B - 3 {-x(a .t8)},

so we can conclude that B C is open for each e > 0. Further,

defining

BE :M y e dist (Y,3S ) c}-{;}) for E < 0,

one can show that ]Be is open for each c < 0, using similar

*, reasoning which appeals to [V.13.i] at the appropriate juncture

(note that it may well be that 1B -0 if ICI is sufficiently large,

but the same method of proof is valid). From this it clearly

follows that 3B e is open whenever C < 0.

Next, defining

C!
1 := ER { Y (=- 84 dist (Y,aB,) > C}x{;}) if C > 0, (13)

and

o[C U {Y 6 dist (Y,38) > -C}x{}1} if C < O, (14)

we shall show that each Bc is a closed subset of IR 4. In fact,

select any C e1R, c # 0. Let ((YM )), be a sequence in

-C 43B, converging to (Yo,%o) 6 R4 . If c > 0, then {(Yn')n)}= C

o, (YY) - . Y0 6 B' - S' U36O whereas if
o 0 0 0

c < O, then {(YC C B0 , so (YO,o) B, 1 .E3.,

n0

.9 ' " ' -# 'm',r',"e
%

" ",41," "." ',p 4%
" '#
, ".

=
,'e'' *4:''," 

'
"" ' • 

"
"' . e'-._. , ' y" "' ' '%""-" '""""""

°
' """""""" "" ' """"" ' 1
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Y E B 0 B uBS  Therefore, if we show that0 0 0
dist (YoaBo) :, inf {IY-Y0 3  Y Ce aB > IdE, (15)

it will be immediately evident that YO rs' if E > 0, Y0 E B0
0 0

if C < 0, and (YO, O) 6,Bg in either case. To prove (15),

observe first that

lrn Y1 -Y 0 9 lim,~(6.-... n ll n =  O i n =  0 ' (16)

and

inf {IZ-YnI 3  Z E as } > ICI for each n EIN. (17)

Suppose, contrary to (15), that dist (Y0,B O) < Icl; then there

exists a point i0 e as50 such that IYo-to1 3 - dist (Yo,3 O) <

I c1. Let us employ the reference pair ( o,X 0) for M, wherein

- x0 (.,; 0) is the identity function on as 0 By (16), we have,

.' on the one hand,

,- n. Ix I( n)-n1n3- IX (iO,;o)-Yo0 3 - IO-YO 3  < Icj, (18)
n x = '0 0

while, on the other, X (Y0, n) E as , so, by (17),

IX 0(%94n)-Y n3 2_ cI for each n E I. (19)

The contradiction resulting from (18) and (19) implies that (15)

is correct. Thus, (YoSo) i, and with this inclusion we can

4::.

... . . . . . . . . . .
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conclude that B is closed. Now, if we write

-e 3"'7~~I ra) = OnRx [a, 6]

(20)

. U {{Y E B' dist (Y,38 ) > clx{;)} if C > 0,

and

-c : €"£MJ3× [a,8] }

(21)

SU {{Y E Bo dist (Y,aSB) > -E}X{f} if C < 0,

it is evident that -, is a closed subset of R for each

non-zero E R.

V.

As our final preparation for the proofs of (7) and (8), we

shall prove that

a[8] B ) whenever i is sufficiently small, c # 0. (22)

First, since Ba, is closed and contains (,,), the inclusion
[a,

BaC,) C ai , must hold for all real non-zero c. For the

reverse inclusion, we note that for some e* - £*(CICB) > 0,

G( 0 x{;}) - {Y E B;' dist (Y,a8 ) - a}x{B} if 0 < a < E, (23)

and

Ga (5 B {Y}) E o0 dist (Y,o8) -)x{;} if -c* < a < 0, (24)

whenever E [a,S]; the proof of this statement is essentially the

same as that of (4) and (5). We examine first the case in which

V %
,-.,
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£ > 0, and suppose also that e < e*. We choose any point

(X,t) CIfB, and consider in turn each of the possible cases:

(a) Suppose that t E (0,8). We have X E B', with

dist (X, B t ) > e; if strict inequality holds, then (X,t) lies in

3 E ,B)E so we shall assume that dist (X,B - .

Because (23) is valid, we can write X - X+cv(X,t) for some

X ' Select a sequence (e ) 1  in (c,c*) which converges
t n nl

to E. Then, because of (23), X+cv(X,t) E S' and
n t

dist (C+c: V(R, t ) - > £ for each n EIN, i.e., the
n t n

C-C

sequence <(R+c , (Rt>,t))n.1  lies in 3B(,B> and converges to

(X,t), so the latter is in E -

(b) Suppose that t - a. If dist (X,DB5) > c, then

(X,a) is in the open set 1B (cf., (9)), which therefore contains

an open "pillbox" B 3(X)x(-b, ab), with 0 < b < 8-a. Thus, the
a

entire line segment {X}x(a,+b) lies in 1BC, clearly implying

that (X,a) EI(, Consider the other case, viz., that in which

dist (X,aB) c c: now we can write X - X+EV(X,a) for some
OL

i e a. Employing the reference pair (5 ,xI ) for M, wherein

X a(',a) is the identity on a, choose a sequence (sn)
n n-l

from (a,a) converging to a, a sequence (cn) 1  in (£,e*)
n n1l

converging to c, and form the sequence (R := Xa(X's )+n n

C v(X(X, s )'S )) which converges to X aCia)+EV('X'1(R,'C),) =
n n n n-l'

X+cv(X,) - X. Again by (23), n CE  ' and dist (Xn ^Bs ) -
n n

C n > E for each n E 14. Thus, the sequence ((X ,Sn)) n 1  lies£nnn

4,',r.--, :", .? .-,;,. " " " - - " " - "" "- " v . . -. . -..-. . - . -.-.- - . . .-I, , . - ' .* --, -.- . , .- . .,, . .- ' - '.. '; , .N;% .,
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Cin M( and converges to (X,c±), whence the latter is in

3B C

(c) Suppose that t 8.The treatment of this case follows

the same lines as that of (b); we omit the details.

The equality Iic 1 therefore holds if 0 < E

C; its proof for -.jZ < c < 0 can be carried out in a similar

manner, using (24), so (22) is true.

We can now quickly prove (7) and (8). In fact, if 0 < l

E using (22) and the fact that BE~ is open,

(a,8 (, e) (cz,B) li'd Ccz,B)'

so if, say, £ > 0,

,,r; U {{Y e B'I dist (Y,DB ) cl{ }}

uf{y E B'j dist (Ya > e}x{ctII

U{(Y E ' dist (Y,aB) > C}x{8I}.

Recalling the definition S C ;{,BE }nOR x (a, )} (7)
(a4,) 0c,0)

results if 0 < c < e*. In the same way, we obtain (8) for

-C < E < 0.

Having (4), (5), (7), and (8) if 0 < Icl < c*, the

equality GCQ) ME3)(l) SC holds for these c, and (i)

has now been completely substantiated. Note, for example, that



-127-

S is a (3,4;q-l)-manifold for 0 <Ic < .

(ii) It is to be shown here first that BE,) is

regularly open, i.e., that 1B -  B for each E < 0' ale) MB(a,s)'

with Ije sufficiently small. In view of (22), we must show that

0

]B whenever e < 0, Idl sufficiently small.

Let c < 0. We begin by verifying that

1° U {Y E BoI dist (Y,; -)}x{}}

- {Ue m  {{Y 6 B1 dist (Y,aS )> -0x{€})}°  (25)

0

It has already been proven that 3B is open, so the obvious inclusion
o

1B C B allows us to assert that B CiE . Assume next that
0 0

(X,t) C , so X6 8 t with dist (X,a8 t) > -c, and there exist
* .* numbers r 6 (0,-2E) and n > 0 such that Br(X)x(t-n, t+,i)

rC
tc. Certainly, then,

B (X) C {Y E StI dist (Y,aBt) > -E}. (26)
r t t

We wish to show that dist (X,Bt > -c; suppose dist (X,aB t) =t t

-E: there is some X B with IX-X1 3 - -c, and the point

r (X-X) clearly lies in B (X). However,x2 (-c)-- r'

L ; ,;;. '.'. .4-..,. ,,,,- -,",-¢-".%v -' ."..'-",....-;. ',;. ,- ..... .,., '% ...-' ~ ,,, ,.----



r -fr -- - - 4 W 'W ' r r7 U "-*

• -12S-

rr

'X+ 2(-c) (R-X)-R 3 21-3

< -C,

which implies that dist -c) (X-X),aB < C' in violation

tt

of (26). Therefore, dist (X,B t  > -c, so (X,t) E . Equality

(25) follows. Application of this result, supposing JE is

small enough that (22) holds, gives directly

0
C-0 -C
B IB

a,8) 3 ,(

0

mflc -{R 3x(ci'e)1

-mB£NJ 3x (a,8)

This proves our original assertion.

Choose a', 8' 61 with a' < a and 8<8' Let c < 0

be such that 1Ic < £*(;.,a',B ) (cf., (24)), and each result ob-

tained during the proof of (i) holds not only for a and 8, but

also when a and B are replaced by a' and B', respectively:

we shall employ the criteria established in Remark [I.2.41.c] in

- . . . . .***/*. o~ - . ....
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order to show that the corresponding set (BC is a normal
(ai,)

domain whenever le is small enough. Note first that 3B
(a,6)

0 . In fact, by (24), we see that

-. {Y E So dist (Y,DB) > -C}x{;} # 0 for each E [a,8]. (27)

One can show easily that ]BE is bounded by using [V.10], while

we have just seen that this set is regularly open. Moreover, the

boundary of 3B E can be written as
(a,8)

,{]B' =ur urus(a,S) [a,8] (a,8) 0 a ( )'

wherein

r: {{Y e ol dist (Y,aBa) -c}xCa}
0 a' a

oY 6S dist (YaB) =

r - {Y e 8°1 dist (Y,aB) >

a a a

and

r { E Sol dist (Y, a ) -}xf{6}..:-,rB :- "81 - '

It is, for the most part, routine to check that this decomposition

fulfills the requirements of [I.2.41.c]. r is the union of two

compact sets which are (2,4;q-l)-manifolds if lei is sufficiently

small, as we remarked prior to the proof of (i). r and ra are

non-void (cf., (27)), while it is trivial to see that each is

C3 3
ON::  relatively open in 3{1B(a,8) as well as in JR x{a. and JR x{6},

I

, ,

*0% %
4,4.
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41 respectively; from the latter fact, each is a (3,4;-)-manifold.

Just as obvious are the inclusions - C x{a , r CR 3x{s}.a

From (i), it is known that SE = GE is a(c(a,) (a,)( ,)

(3,4;q-l)-manifold. By its very definition, S is open in
(a,8)

a{(BE,}. Let us show that
(a,e)

( S( C U{{Y e Ba1 dist (Y,aS -c}x{a}}
(28)

p{ CE. 8 0 1 dist (Y, = -c}x{8}} C SE

a. ( ,

Indeed, since a' < a and 5 < B', the inclusion claimed in (28)

is clear from the results of the proof of (i), with a and S

replaced by a' and S', respectively, for (8) then gives

S ,') U Ua<< {{Y e B° dist (Y, )-

To prove the equality in (28), suppose first that X E 50 with
a

dist (X,9B) - -e. There exists XE aB such that X - X+Ev(X,a)..
a aL

Using the reference pair (B ,Xa) for M, employed in the proof
a

of (i), and selecting a sequence (s )= in (a,B) converging
n n-l

to a, the sequence ((X a(X,s )+cv(xa(X,s ),S ),S )00 lies inn n n n n-l

S (a,a) and converges to (X,a), showing that this point is in

(a,)"We arrive at the same conclusion in case X E So with

dist (X,3B3) = -c. Thus, the union appearing in (28) is contained

in S-e On the other hand, suppose (X,t) 6 S there

exists a sequence ((X ntn)) C SC converging to (X,t),
n n n (a,e)

so lim X = X, lim t =t, and X E Bo with
nn n n n tnn n tn

S . . . . ..'• . . . . . . . . ,. _ . . . ..,l.b . '.." -".'..,".T ..- 'i .'.'.....,'.-.' . . . .v ? v: - " \ " ! . ' ;
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dist (Xn, B ) -e for each n e1N. Since {t I}0 C (a,B), wen t n nwi
n

have t 6 [a,8]. We wish to show that dist (XaB) -E. For
t

each n EI , there exists j E aS for which Xn X +ev(X ,tn);
n n n n

in fact, it is clear that (X,tn) - G, ,X,tn), whence it

folw tha (X )B( conve) hecei
follows that converges to a point X'E aB and (X,t) -
-n

(X,t), or (X,t) - G(, MO)(,t). In view of (24) (written

for a', 0'), it follows that dist (X,aB ) - -E. Consequently,
t

(X,t) is in U < {{Y E B° dist (Y,aB ) - -cOx{}, which is

just the union appearing in (28) (cf., (8)). Having completed the

proof of (28), we can assert that S Os) is contained in the

(3,4;.q-l)-manifold S( B',,)  Finally, since reasoning as in [VI.68]

implies that

r - {Y 6 81 dist (Ya) > -elXa),

and

r - {Y E s dist )Y3 > -c}x{B}, i

provided Ie is sufficiently small, we can also use (28) to

E-conclude that r n-S C r 0  and r Isc- C r
a (Os) 0 B (a.8B) 0'

Having checked that all requirements of [I.2.4l.c] are ful-
filled by IB if £ < 0 and leI is sufficiently small,

(a,8)

the set is a normal domain for such c.

(iii) By proceeding as in the proof of (ii), mutat $"

.'

d1'"
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m.tancWs, one can show that IB is a regularly open subset of

IR4 whenever e is positive and small enough that (22) holds; we

shall suppose that this has been done.

• ..-. Now, select i > c*, and fix any positive p so large that

(/ ) C B3 *(0). Obviously, B C B 32(0). But also, for
(-c)a /2a 0/2

each E (a,$], by recalling [V.10], we find that

tb B - a+ _ )  3 3  3
S(;-a) (B aC )(Ba) C B/2(0).

'V. Then it is easy to show that for each a E (0, p/2],

3 3
{y EIR 3 dist (Y,B) < a C B3(0) whenever 4 E [a,1, (29)

-4.p

hence that

(Y E 5' diet (Y,a8 ) > ao}B (0) is non-void and open

3 ,( 3 0 )

in I3 for each E 6 [a].(
-4"

Thus, defining

3S:BC,',,)r(B (0)x(a,s)} for c 6 (0, o/2),

4
we obtain for each such c a non-void open subset of IR possess-

3
ing a non-void C-section which is relatively open in ]R x{;), for

each C [a,8]. We wish to show that whenever c is sufficiently

4 small the corresponding 8) is a nora. jomain; for this, we

shall rely once again upon the result of [I.2. 41.c]. Let us first

satisfy ourselves that

Id
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)IBC {B (0)-x[a,81} for each sufficiently small

(31)
positive E.

The inclusion C.B ,{B(Oi. _]
The incusion B0) (CIB ,)r'{ 0) ~ is plain enough,

since the latter set is closed and contains ]BC 'p  Suppose e(a, )

is so small that (22) holds. Then

3BC ) { B3 (0)-x[,8]1}(z, P (32)

U < {{y E 8' dist (Y,aB5) > €, 1Y13 <

In fact, if we choose E (0, min {c*, p/2}) and assume that

0 < C < Z, then we have not only (32), but also

{Y 6 B dist (Y,35s) - a) C B3 (0) for each a r (0,c)
(33)

and C e

{YE r dist (Y,aB,) > eIB 3 (0) is non-void and open

3 (34)

in i3 for each ' 6 [0,(],

and

Ga(B x{O}) - {Y B'. dist (Y,aB.) a a}x{;} if a E (0,j)

(35)
and 1E [a,B],

following from (29), (30), and (22), respectively. Now, choose

(Xt) 6 3 Q,)r,{ o 3 i.e., by (32), such that t E [a,S],

X r6 'BP (O)-, and dist (X,36 ) > c: then one can construct at

4.x

4%
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E
sequence in B which converges to (X,t). The proof of this

fact is most easily accomplished by using (33)-(35) and proceeding

essentially as in the proof of (22), considering each of the cases

t E (a,), t - a, and t - S. The additional subcases which must

be examined here, because of the presence of the bounding set

aB 3(O)x(,8], can be handled in an obvious manner, with (34). We
P

shall omit the details of the verification. We conclude that

(X,t) r=] B)' and so (31) is true whenever 0 < e < min {i, p/2}.

Now, again if 0 < C < min {U, 0/2}, since IBE is

regularly open and (31) holds, we find immediately that B is

also regularly open:

-0:3C.P = {5C- f{ 3 0xc,]1

(,8) (cI,8) n B p(O)Xa'}

-m 3( {B(O) (ci,) I

O's,) P

= mc( , '(3O) (, )

(BE ,S)"r{ 0)(')

Choose i', 8' EI with ci' <ci and 8 < '. Let c>O

be such that c < miin { , p/2, £*(t[,ci',B')1 and each result obtained

- "during the proof of (i) holds for ci, 8 and with ci',B relc

.ing c, B, respectively. Then () i o-vibudd

. ' regularly open subset of m4 Moreover, it is easy to identify a

decomposition of a{](£, I '8)nC hc ulil l

-' requirements set forth in [I.2.41.c] if £ is sufficiently small;

".",

=3 U

-(a4)

Chos a' S' . :-~~ EI wit a'* 5< a an * . e
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the details can be supplied by basing the reasoning on the proof

carried out in (ii). Thus, ]BEOP )  is a normal domain whenever

c is sufficiently small and positive.

(iv) We suppose Ije to be so small that the statements

proven in (i)-(iii) hold. Fix (Z, ) E (9B)(a 8). We shall first

4. show that

T (GE (Z,;)) - T B(Z,;) for jle sufficiently small, (36)
S E (a$)X(a,0)

for which it suffices to secure the inclusion

T (G CB) (Z,;)) C T (Z,) if 1E1 is small enough. (37)

To prove (37), let BE TS (G 8)(Z,)). There exist 6 > 0

(Ca, is)

;'"' an €E C((-66) ) wth €(-6 ) S€ -G

--. (aS' (0) -(a,a)(,)

and (0) = .Define :(-6,6) - by

*(a):- G O (o) for Idl < 6, (38)

and f (-6,6) -JR according to

VV f (a) :- (a),o) for 101 < a. (39)

Let us assume, for the moment, that
-"a-.

1 (- 6, O) E C1((-.0 ,60);R) for some 6 IE (0,6]. (40)

Then, since ((-60,60)) C A and ,(0) n (Z,;), it follows that

•W. AiVA.



-136-

"-'(O) T B(Z, ). Further, recalling that 1B°  is a q-regular

domain ([v.47.iii.2]), there exist an open neighborhood of (Z, )

4 q
in m , U(Z, ), and a function (Z,;) E C(U such that

-. grad ( does not vanish in U(Z, ), and

vaB(Yts) - {l+u 2 (Y-s)) (v(Ys),-u(Ys))

- 4grad Z (Ys)"4
1. grad 4D )(Y's) (41)

for each (Y,s) 6M U MW

j I.. Thus, for the function grad- D(Z,;) 0 (Z,;),l' D(Z,;),2' (Z,;),3 ) 6

& cq-1 3
- (U( )MOF), (41) evidently implies that

v(Y,s) jgrad *(Z,) I3 grad- * (Z,)(Ys)
(Z,~) 3 (Z,(42)

for each (Y,s) C a]B-U z,

In view of the definition (39), (40) and (42) together imply that

f is of class C on a neighborhood of 0. Since Ifv(a)I4 - 1

for ji < 6, we find that f (O)fv'(0) - 0, whence

V(Z')OfV(0) = {1+U2(Z,;)) (v(Z'),-U(Z,;)).((voO)'(O),O)

S, {l+u 2(Z,;) f-/2 fV(0)Of'(O)

* 0,

i.e., f'(0) E T B(Z,i). But then, observing that

S)G = G , - 1P+Ef on (-5,6), (43)

* the desired result

-S5.
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4) (0) - '(0)+ef'(Q) e T a(ZO

follows. This implies that (37), hence also (36), is correct,

provided (40) obtains.

Let us check, then, that (40) is true for all e with IlI

sufficiently small, independently of the point (Z, ) chosen in

(BB ) " First, by the q-regularity of B °  and the compactness

we can find a finite family of open subsets of IR4

forming a cover for (BB)[ , {U iPI and a corresponding

collection of functions { such that, for each

i r {1,...,p}, for certain positive numbers mi and Mi,

mi  Igrad- 0i13 < Mi on Ui, (44)

10i,jk . Mi  on Ui  for j,k = 1,2,3, and 4, (45)

and

v(Y,s) - Igrad- $i(Y's) l3- grad- (Y's)

(46)

for each (Ys) E aznUi,

wherein grad^ 6i :- (0i,l' 01,2' 41,3 e Cq-1 (Ui9R3); cf., the

reasoning accompanying (41) and (42). Because of (44) and (45),

we have

*4,

-.p". " " ,•" ' '" " : -" " . " '.k '' "•", ." ' ."' '' .•,.,-.'' .,. , ¢
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f6jk+c Igrad i j 'kl' S)

.* det _k<4 0

0 0 0 1 (47)

whenever JlE is sufficiently small,

for each (Ys) E O.Ui, for

each i 6 {l,...,p}.

Now, choose any c fulfilling the latter requirement (and the

restrictions previously imposed). Choose t E {1,...,p} such that

(Z,) 6 U,, and define F: U x(_6,6) -4 by

F(Ys,a) :- (Y,s)+ grad- 0 (Y,s)[ 0-()

(48)

for (Y's) 6 U, lal < 6;

it is clear that F 6 C1 (UIx(-6,6)R 4 ) (recalling that € 6

C ((-6,6);R4 )). Since (43) gives

9(O)+C(vo*(),0)-* (a) = 0 for jai < 6, (49)

with (46) we find

F(*(a),a) (a)+e(v ( (a)),0)-p: (a) - 0 for Ioi < 6, (50)

so, in particular,

F(Z, ,O) - F(*(O),O) - 0. (51)
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Moreover, by (47), it is easy to see that

det ((Fj, k(Z,',O))l k > 0. (52)

Having (51) and (52), we can apply the implicit function theorem to

F and the point (Z, ,0), and combine the properties of the

resultant implicitly defined function 6 C 1 ((-,6)1R 4) with (50)

and the continuity of * to deduce that 4 and 4 must coincide

in some neighborhood of 0. The details of this reasoning differ

in no essential from those laid out in [VI.68], in the proof of

[1.2.43]. Clearly, (40) now follows.

Maintaining the restrictions placed on Ic!, from (36) we

can conclude that

N (G: (Z,;)) - N 33(Zi. (53)
Sm (U.8)

"? " If(c>i,,B)

If ' > 0, 3 is a normal domain, while if c < 0 and p is

chosen as in (iii), then lB ' is a normal domain; in either case

the exterior unit normal field for S€ E : E is(L ) (Ox,) SC
' (a,B)

defined. The result (53) implies that v a,(G, (Z,;)) must

be given by one of va3B(Z, ), -v3B(Z,;). Consider the case in which

' <0. It is easy to see that the set

(Bs) :0 {Y 6 8 dist Y ) > -E)

is a (q-l)-regular domain in lR3 , with exterior unit normal field

given by

q
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-1

v = vC (s)) (54)0a) (a,
s( )E B

whenever jeI is sufficiently small and s 6 (a,$). In fact, (54)

follows by arguing as in the proof of [VI.68.iii], noting that

Y+Cv(Ys) C 50 with dist (Y+av(Ys),DB ) -a whenever jal isS 5

sufficiently small, s C (a,a), and Y S6B • On the other hand,

we can also show that

C
0 - (",s) for each s E (a8), (55)3(8O) C (a•S •
)

C

wherein v denotes the field of unit magnitude constructed
4(a.

from (vel V).) Va•3 Indeed, by choosing s 6 (a,$)

and Y E S with dist (Y,5s ) = -C, so (Y,s) 6 S then

the (q-l)-regularity of B (a•s) at (Ys) shows that there exist

4 C
an open neighborhood of (Ys) in R , U (Ys) and a function

0 C Cs Cq- 1(U E ) with the properties described by [1.2.27].

Thus, by Remark [I.2.32.b],

Va Ms) - Igrad 0grad (Ys). (56)(Ys) ( )14 (Ys)
-1

Since vo (Y,s) is a non-zero multiple of va](GE., (Y,s)),S ce V~ ) 3 (c, 8)'

we see that (4s ,  (Y, s) ,2(¥ ,s) , tY) (Y 's)) # 0,

so it can be assumed that (t(Ys),' *(Ys)2' €(Y)3) does

not vanish in U . But then it is clear that the open neighbor-(Y,s)"

hood of Y in mR3 given by U : EIR3 j (s) E U s and
Y (Y's)

the function i- 4o (0,s) in Cq-I(uc) possess the properties
(Y's)' Y

described in [1.2.27] relative to the (q-l)-regular domain

,'W . ... , - - -. , , .. .; , *.€ . -, - -, -% , ,- * '-.,- - . 4.. -. ... .-* .'.. . .~' .-- ,_,, ..- ,- . .. ' ,,, .'-"
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(50) C R3 and the point Y E a(S0  This, in turn, -implies that... (s z C an thCon ( £

n v 0 (Y) - Igrad^ 4PE (Ys)I • grad (Cs(Y,s)'), (57)
.%.\' (Bs)

wherein grad^ * (0,e
(Ys) (Ys),l' 4(Y,s),2' 0(y,s),3). Now (55)

follows from (56) and (57). Finally, upon comparing (54) and (55),

'A-, keeping in mind the relation

M ' 1 1+U 2}1- 1/2 .-(V ,- U) ,

we infer that

V, (G (Z, )) va3 (z,¢) for each (Z,;) (M)

whenever e < 0 and jcj is (58)

sufficiently small.

Analogous reasoning leads to the equality

v (G (Z,)) - -va8 (Z,) for each (Z,) E (31B)

P whenever e is positive and (59)

sufficiently small.

The assertion of (iv) is a consequence of (58) and (59).

(v) This statement has been established in the proof of

4(i). 0.

.



-M .7 - - -

-142-

V.A. APPENDIX

A TOPOLOGICAL RESULT

The following topological fact implies the validity of

Lemma [V.6]:

L E M M A. Le.t T1 be a topotogicat Apace, T2  a f iut-couwtable

Hau6do46j zpace, and f: T * T2  a continuou4 bijecZion wiC the
1 2

Jo~owing ptopeAty:

2 a compact bet o6 T2

" the.e exi4t6 a compact K C TI 6uCh

ta-t K 2 C f(K1).

Then f- 1 .6 conntuou.6, ,so f i.6 a homeomorph, . 6m.

P R 0 0 F. In this setting, it suffices to show that f-l

T 2 . T is sequentially continuous. Accordingly, let (x ) I

be a sequence in T2  converging to x0 6 T2 . The set K2 :

S(xi I I - 0,1,...) Is compact in T2 , so there exists a compact

K 1 C T such that K2 C f(K). Now, f1 := f j K: K " f(KlI

is bijective and continuous when K1 and f(K) are equipped

with the respective relative topologies; since K1 is compact

and f(K) is Hausdorff, fl is a homeomorphism, so f f(KI) -"

K I  is continuous. Clearly, (x )7-1 converges to x0  in f(K1),

whence

,. " .i- .' M. . ,... -" , . . . " V' V ."..,
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l'- f (xi) lm f(x f -1 -( in K

which implies, in turn,

iim f- (x )  f-l(x) in Tip
i -I. 0

as well. Thus, is sequentially continuous, and so also
-continuous, since T2 is a first-countable space. 0.

Z-N* V-

4."

-J'

°N1

4.*
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